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Abstract: A universal gamut mapping algorithm (GMA) which performs well for 
any images in color reproduction between different media would be highly 
desirable. However, various GMAs have previously been reported to have 
image–dependent behavior. In order to deal with this problem, recent studies 
focus on image adapted solutions. Nevertheless, these solutions normally were 
developed based on a predetermined image characteristic which is incapable of 
optimizing all types of reproductions. The present study hence investigates 
various image statistics and their related GMA performance for a better 
understanding of their correlation. In this paper, the process to identify important 
image statistics is proposed and an automatic approach to choose the best-suited 
GMAs for a certain image is also demonstrated. 
 

Introduction 
 
Color gamut mapping refers to the transformation of an image by mapping its 
colors to fit the gamut of a destination medium. In graphic communications, 
displays and printers are commonly regarded as the source and the destination 
media respectively. As a typical printer gamut is smaller than that of a display, 
how to minimize the change of color appearance through the display-to-printer 
image transformation is an issue that is being intensively studied. Various kinds 
of gamut mapping algorithms (GMAs) have been proposed in recent years 
(Morovic and Luo, 2001). Most of the researches intended to derive a single 
model which ideally ought to perform well for a wide range of images and 
conditions. However, reviewing the literatures, one can see that the performance 
of GMAs has almost invariably been reported to depend on the image contents.  
 
In order to deal with this problem, recent studies focus on image adapted solutions. 
These solutions normally were developed based on a predetermined image 
characteristic such as image gamut or lightness histograms (Morovic and Luo, 
2001). Yet, an investigation on GMA performance showed that none of them is 
the dominant factor in controlling the outcomes (Sun and Morovic, 2002). Since 
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a single model is hard to cover all images’ need, we’d better try another way to 
solve this problem: finding the best-suited GMA from a range of GMAs for an 
image based on its statistics. Therefore, the present study aims to investigate 
various image statistics to see what kings of statistics are particularly important 
on predicting the GMA performance. Once the key statistics can be extracted, an 
automatic approach can be derived to optimize the selection of GMAs based on 
the limited image statistics. 
 

Methods 
 

A psychophysical experiment was set up in which observers were shown an 
original on a CRT display and a number of laser-printed reproductions of it in a 
viewing booth. The observers were asked to give estimation about the similarity 
between the reproductions and their original. The observers’ responses were 
recorded so as to summarize the GMA performance. On the other hand, originals 
were analyzed on base of three types of image statistics: 1D color, 3D color and 
texture information. There were 63 items coming from the three categories to be 
tested. Because many of the items could be useless in the prediction of GMA 
performance, two-stage selection was first performed to eliminate most of 3D 
color statistics. The 1D color and texture parameters were then selected using 
the Principal Component Analysis (PCA) (Jackson, 1991). The variations of the 
statistics also provided useful hints for the parameter reduction. The resulted 
principal factors were used to predict the best-suited GMA via the Byers 
Classifier. To save the computation cost, we prefer limited parameters as 
possible. Our goal therefore was to maximize the performance of GMA selection 
while minimizing the numbers of factors in the image statistics. 
 
 

Gamut Mapping Algorithms 
 
Four GMAs were used to generate the reproductions. They were denoted as 
SKNEE, XSGM, HP and USMHP. The first, SKNEE, is a compression-type 
gamut mapping algorithm which is capable of keeping image contrast during the 
mapping (Braun and Fairchild, 1999). XSGM was proposed by Bala et al. (2001). 
It applies a two-stage gamut mapping with one spatial filtering process in the 
implementation. The algorithm features to keep spatial details during the 
mapping and a 5-by-5 spatial filter in this study was used on lightness plane to 
extract the spatial information of the original. HP stands for ‘hue-preserved 
minimum deltaE clipping’. In the algorithm, original colors are assigned to the 
printer gamut while minimizing color differences without change the hue angle. 
Saturation of an image can be preserved mostly by this GMA. The forth 
algorithm, USMHP, is similar to the HP except on thing that the former applies a 
well-known Unsharp Masking technique (USM) to the originals before 
gamut-map the image. This algorithm also applies a 5-by-5 spatial filter on 
lightness plane in this study to maintain the sharpness of the image.  
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Color Reproduction System 

 
To achieve a high-fidelity color reproduction, newly proposed CIECAM02 
(J,ac,bc) color space (Moroney et al., 2002) was used for gamut mapping as well 
as image transformation. The CRT display was first adjusted to D65 to fulfill the 
IEC 61966-2.1 standard (IEC, 1999) and the view booth also fitted the standard 
to minimize the involvement of chromatic adaptation. The viewing environment 
was set up as “dim”. All test images have 0.5 cm white borders and were 
displayed against a uniform gray background. A ViewSonic 17” CRT was 
characterized using the CIE recommended GOG model (Berns, 1996) with a 
mean error of 0.90 ∆E*

ab based on 27 test samples. The destination medium was 
Epson AcuLaser C4000 laser printer. We chose toner-saver mode with plain 
papers to generate our prints to ensure that the colors produced by each GMA 
were significantly different. The printer was categorized by inverse 3D LUTs 
with tetrahedral interpolation (Hung, 1993) which would generate a mean error 
of 3∆E*

ab. 
 

 
Figure 1: The structure of the proposed color reproduction system 

 
 
All test images were transformed from sRGB space to (J,ac,bc) space based on 
the GOG model to ensure the originals displayed on the CRT can be reproduced 
closely on the laser printer. The four GMAs were implemented in between to 
minimize the visual difference across the two devices. 3D LUTs with tetrahedral 
interpolation was used for gamut mapping. To avoid quantization errors, all data 
were stored in 16-bit per channel. The resolution (interval) of the 3D LUTs were 
set as (4,5,5) for (J,ac,bc) channels respectively. In terms of the computation cost, 
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XSGM is greater than all the rest and USMHP also needs more time to complete 
the work. Refer to Figure 1, LUT1 is used for (J,ac,bc) to (J’,ac’,bc’) conversion 
but LUT2 directly transferred colors from (J,ac,bc) to gamut-mapped printer’s 
signals (i.e., (R’,G’,B’)). Since the color mapping was performed in the 
device-independent (J,ac,bc) color space, the image statistics also were counted 
under the space. 

 
Visual Assessment 

 
100 images including portraits, night scenes, landscapes, architectures, 
commercial posters were regarded as originals in the study. The pixel 
dimensions of the test images are 800x600 on average, but they were resized 
into 400x300 for display and the prints were rescaled to fit the image size on the 
screen. 10 observers were asked to score the 100 originals along with their 400 
reproductions under D65 illumination. The viewing booth and the display were 
toward different directions (with a 90 degree angle) to avoid the observers 
performing a simultaneous comparison between the original and its 
reproductions. The observers were asked to score the magnitude of image 
differences between the pair of images using category judgment method. Eight 
categories was used, where number zero indicated a perfect match and number 
seven represented the worst case you can imagine. 
 
The experimental data were summarized using the Mean-Category-Values 
method (Bartleson, 1984) to identify the best-performed GMA for each original. 
A Guassian-type Byers Classifier (Sonka et al., 1999) was used to predict the 
best-performed GMA via various image statistics extracted from the originals. 
Here, we performed a T-TEST on individual image set to see if our prediction 
has no significant difference to the observers’ judgment (10 observations for 
each side). For example, if the classifier predicts that the best-suited GMA for 
image K was XSGM but the observers preferred HP, what we can do is to 
compare the raw observers’ responds of the image on the two GMAs. Assuming 
the raw responds for XSGM and HP were matrix XK and YK respectively (10 
observations for each matrix), we would use T-TEST to determine the accuracy 
of our prediction. 0.1 is the significant level used throughout the study. 
 
 

Image Statistics 
 

The present study took into account three types of image statistics: 1D color, 3D 
color and texture information. The following is their specification: 
 
One-dimensional (1D) color statistics including image summaries and color 
histograms have been widely used for manual color tuning. Where, Lightness (J), 
Chroma (C) and hue (h) are the three attributes containing the most important 
color information. Hence, the (J,ac,bc) originals were converted into (J,C,h) 
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space to perform the statistics. Color histogram is the best tool to illustrate the 
whole picture of the 1D color distributions. However, the histograms contain too 
much information and hence are inconvenient for on-line image analysis. For 
this reason, we selected six image summaries, arithmetic mean, standard 
deviation, skewness, kurtosis, 3rd percentile and 97th percentile to describe the 
feature of a 1D image color histogram. The reason of using 3rd and 97th 
percentiles rather than the minimum and maximum is the latter would be 
seriously influenced by color extremes which only occupies a very small area in 
the image. 3rd and 97th percentiles hence can better represent the dynamic range 
of the image histograms. Six statistics with lightness (J) and chroma (C) result in 
12 variables. These variables are denoted as L_MEAN, L _STD, L _SKEW, L 
_KURT, L_3RD, L_97TH, C_MEAN, C_STD, C_SKEW, C_KURT, C_3RD and 
C_97th. 
 
Due to the circular nature of hue, it’s meaningless to count the mean or dynamic 
range of a hue histogram. The hue histogram hence was divided into eight 
segments (from 0 to 360 degrees, 45 degrees each) to count the percentage of 
image’s color on the eight primary hues. If a color is nearly neutral, its hue 
becomes less important. Hence, the statistics only took chromatic colors (C > 20) 
into account. Together with the former, now we have 20 items to depict images’ 
1D color information. 
 
A specific color cannot be located by 1D color information. For example, the 
proportion of skin tone cannot be identified by a 1D lightness histogram or a 1D 
chroma histogram. Therefore, we separated the (J,C,h) color space into 27 
blocks to specify the images’ 3D color distributions. In previous study, we found 
that 3D histograms with more hue segments would be useful in image retrieval 
(Sun et al., 2003). In the model, 27 regions were obtained by equally dividing 
hue angles into eight segments (0, 45, 90, 135, 180, 225, 270 and 315 degrees); 
three sections for chroma (C=20 and 50 as the thresholds); three lightness sections 
(J=40 and 70 as the thresholds) for low-chroma regions and two sections (J=55 as 
the threshold) for mid-chroma regions; no lightness separation for high-chroma 
regions. The 27 histograms are denoted as W1 to W27. So far, 1D and 3D image 
statistics contain 47 items in total. 
 
Images’ multi-spectral texture information can be obtained by Fourier or 
wavelets transform. However, they are time-consuming in their computations 
and no standard statistics can be applied for comparison. Hence, the study used 
simple spatial filters to extract the texture information. In image processing, 
Sobel filters have been commonly used for extracting an image’s contours 
(Gonzalez and Woods, 2001). The contours are important features on image 
recognition. However, its impact on color reproduction is still unknown. 
Actually, Sobel filters are capable of extracting not only contours but also 
texture information. The study thus used Sobel filters with 3 different angular 
magnitudes, 0, 45 and 90, to extract the texture information from different 
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orientations. On the other hand, simple 3-by-3 high-pass filter also was poplar 
for texture analysis. The filter hence is concerned in the study as well. Because 
previous studies showed that texture recognition is more correlated to lightness 
rather than chroma and hue, we only use lightness plane of an original to 
perform the spatial filtering. The gray level of the filtered lightness-image was 
then summarized in terms of arithmetic mean, standard deviation, skewness and 
kurtosis. The four statistics with the four filters form 16 texture variables. 
Together with the previous, now we have totally 63 variables. 
 

   Psychophysical Results   
 

The 400 reproductions were evaluated by 10 observers. However, we found that 
some bright images only have very small score differences on the four GMAs. 
This kind of images could introduce noises for image analysis. Hence, in the 
following discussions, 33 originals with their 132 reproductions having a 
maximum mean-score difference on the 4 GMAs less than one categorical unit 
were excluded.  
 
In terms of the mean scores of the 77x4 reproductions, most of observers 
preferred USMHP (see Table 1). The reason could be that the images lost spatial 
details intensively due to the gamut difference between the two devices are huge. 
By using the previous introduced T-TEST, we found that the USMHP would 
have no significant different to the number one GMA on 77.9% of images. But 
the algorithm is costly. We should avoid using it if possible. If we randomly 
select a GMA for use, 47.4% images will regard it as the number one under the 
significant level of 0.1. Both the averaged number one, USMHP, and the number 
two, XSGM, require high computation cost. If we can use simple image analysis 
to determine which GMA is suitable, the quality of reproductions could be 
enhanced and the cost could be reduced. The accuracy of the proposed automatic 
approach should be higher than 47.4%, otherwise we just need to randomly 
select one of the GMAs. 
 

Table 1: GMA performance expresses in different ways. 
 

GMAs mean score the best / all images the best in T-TEST / all images 
SKNEE 4.82 18.2% 23.4% 
XSGM 4.16 31.2% 46.8% 

HP 4.22 18.2% 41.6% 
USMHP 3.88 32.5% 77.9% 
random 

selection 4.27 25.0% 47.4% 

Note: the lower the mean score, the better the color reproduction  
 
 

Stage 1 Reduction 
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63 variables are too many for on-line image analysis. To shorten the time and 
enhance the performance, some of the variables have to be eliminated. We start 
from 3D color histograms because previous studies suggested that the 
histograms are the key factor controlling the image-dependent behavior (Sun 
and Morovic, 2002). Observing the states of the images’ 3D histograms, we 
found some of them only cover very little amount of image pixels. We believe 
this sort of histograms is helpless in the GMA prediction. Hence, in the first 
stage reduction, we counted each histogram. If the value in a histogram was 
lower than 1% of the total image pixels and the case happened on more than 
81.8% images (=100%-18.2%), the histogram will be removed from the list. 
Under the above criteria, the eliminated items were W8, W11, W12, W15, W16, 
W18, W19, W23, W24, W26 and W27. After the first stage reduction, 16 
(=27-11) 3D histograms left for the second run.  

 
Stage 2 Reduction 

 
We put all 63 variables into the Byers classifier individually to see the accuracy 
of our prediction. The average accuracy to predict the best-suited GMA was 
50.8%. It suggests that the GMA performance cannot be predicted well using a 
single statistical parameter. Multiple parameters should be used to enhance the 
accuracy. In order to select the limited items to enhance the accuracy, second 
stage reduction was performed. We made an assumption that: if a single item 
performs the task (predicting the best-suited GMA) badly, it is likely to interfere 
the performance of a group of items. Such a single item therefore should be 
removed from the list. The 16 3D histograms hence were further reduced to 9 
variables based on how accurate each item can solely predict the visual results. 
The accuracy of random GMA selection, 47.4%, was the threshold. If the 
accuracy cased by a signal parameter was lower than the threshold, the item 
would be removed. In the stage, 5 items were eliminated. They are: W7, W9, 
W14, W17, W20, W22 and W25. Through the two-stage reduction, only 9 3D 
histograms survived for the GMA selection. 

 
Stage 3 Reduction 

 
In the third stage, Principal Component Analysis (PCA) was employed to extract 
the important variables among 1D color and texture information. The PCA can 
only tell you which variables are representative but it cannot show you which 
variable is important on GMA selection. Therefore, we divided 1D color into 3 
subgroups. To reduce the number of variables in the final solution, only one 
principal factor was extracted to represent the variables in the subgroup. The 
first subgroup is the statistics of lightness where L_MEAN was the principal 
factor of L_MEAN, L_STD, L_SKEW, L_KURT, L_3RD and L_97TH. On the 
other hand, C_MEAN was the representative of the six chroma-type parameters. 
H6 was the primary factor for the eight 1D hue histograms. In terms of the 16 
texture factors, we found S45_SKEW is the key parameter to represent the 
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whole family. 
 

The Performance of the Combined Variables 
 

After the 3-stage reduction, now we have 9 variables from 3D histograms and 4 
principal parameters from 1D color and texture information. The accuracy on 
predicting the well-suited GMA was counted using the T-TEST method 
mentioned earlier. The results are shown in Table 2. 
  

Table 2: The GMA performance of 9 to 13 principal factors. 
 

Accuracy % 9 3D hist. + L_MEAN + C_MEAN + H6 + S45_SKEW 
no. of factors 9 10 11 12 13 

SKNEE 92.9 92.9 100 100 100 
XSGM 91.7 87.5 95.8 100 100 

HP 78.6 85.7 85.7 85.7 100 
USMHP 84.0 88.0 88.0 88.0 84.0 

All images 87.0 88.3 92.2 93.5 94.8 

 
 
As can be seen, after carefully choosing a number of variables from the 63 
image statistics, we can use their combinations to enhance the accuracy of 
automatic GMA selection up to 94.8%. Note that this type of study always needs 
a great number of image data; but it will be a hard work for observers. Hence, in 
this study, we use all available data to model the image characteristics without 
using an independent data set to test its performance. The accuracy should be 
reduced a bit if we have a large independent data set to test, but we believe the 
methodology in this study is still valid for researches who planning to conduct 
similar studies. 
 

Table 3: Pixel frequencies of the 77 images in 9 selected 3D color histograms. 
The starts indicate the deletion. 

 
Pixel % W1 W2 W3 W4 W5 W6 W10 W13 W21 
SKNEE 32% 14% 8% 11% 2% 1% 1% 2% 32% 
XSGM 31% 5% 9% 8% 3% 5% 1% 2% 31% 

HP 23% 5% 6% 5% 1% 2% 4% 1% 23% 
USMHP 39% 7% 7% 4% 2% 2% 3% 2% 39% 
max-min 16.1% 9.3% *3.3% 6.6% *2.1% 3.9% *3.6% *1.1% 4.7% 

 
 

 Stage 4 Reduction 
 
In the previous section, we introduced 13 parameters to prediction GMA 
performance; however, the number is still a little bit high for on-line calculation. 
Therefore, we try to reduce the number of the 9 selected 3D histograms. What 
has been done is firstly to average image histograms for its best-suited GMA 
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(see Table 3). And then, calculate the difference between maximum and 
minimum average values for each histogram. If the difference is too small, we 
assume that the factor is incapable of differentiating the images for GMA 
selection. We reduced the number of factor from 9 to 5 based on the above rule 
and the performance of the rest 9 factor-combination is shown in Table 4.    
 

Table 4: The GMA performance after four-stage factors reduction. 
 

Accuracy % 5 selected W + L_MEAN + C_MEAN + H6 + S45_SKEW 
no. of factors 5 6 7 8 9 

SKNEE 78.6 78.6 78.6 85.7 100 
XSGM 75.0 79.2 91.7 87.5 91.7 

HP 64.3 64.3 64.3 64.3 92.9 
USMHP 80.0 80.0 80.0 88.0 88.0 

All images 75.3 76.6 80.5 83.1 92.2 

 
 
 

Image Characteristics vs. GMA performance 
 

Finally, we select 9 principal factors for automatic GMA selection. It’s 
interesting to see whether any patterns which potentially influence the GMA 
performance can be found within the data. To this end, we summarize the image 
statistics of the 9 factors for their best-suited GMA. The results are shown in 
Table 5. The W1 is close to black, the W2 represents mid-gray, the W4 and W6 
cover deep red and greed when the W21 dominates saturate yellow. The 
L_MEAN and the C_MEAN represent the overall lightness and colorfulness of 
an image. The H6 correlates to deep blue and the S45_SKEW represents the 
amount of textures. When close look at the data, we might say: 
 

Table 5: Image statistics associated with their best-suited GMAs. 
 

 W1 W2 W4 W6 W21 L_MEAN C_MEAN H6 S45_SKEW 
SKNEE 32% 14% 11% 1% 2% 39.5 28.6 10% 6.5 
XSGM 31% 5% 8% 5% 3% 39.4 23.1 23% 5.3 

HP 23% 5% 5% 2% 6% 34.1 34.6 35% 6.2 
USMHP 39% 7% 4% 2% 2% 36.0 25.4 29% 5.4 
average 32% 7% 7% 3% 3% 36.8 28.2 23% 5.7 

 
 

 
1. When HP was favorable, the images normally contained less black (W1). 

The explanation could be that the HP model clips black colors intensively. If 
an image has large proportion of black, the model would give you a poor 
reproduction. 

  
2. When an image contained a lot of mid-gray (W2), SKNEE would be the 
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best choice because the model preserves mid-tone using a sigmoidal 
function. 

 
3. As the HP was designed mainly for minimizing the lost of saturation, the 

model was favorable for images with high chroma (C_mean) and saturate 
yellow (W21). 

 
4. If an image contains large proportion of saturate blue (H6), SKNEE won’t 

be a good choice because it might map the colors toward black if the 
lightness of primary blue and black are close on your destination gamut. 

 
5. If an image has more texture on it, the S45_SKEW statistics will be lower. 

In such case, spatial models like XSGM or USMHP could be useful for 
color reproduction.    

 
 

Conclusions 
 
Gamut mapping is the key element for cross-media color reproduction. As a 
universal GMA is hardly to be found, we proposed an intelligent approach to 
automatic select the best-suited GMA for the original via image analysis. There 
are too many parameters can be used for the image analysis, therefore, we need 
to extract the key factors from a range of image statistics to optimize the speed of 
process and to enhance the accuracy of GMA prediction. In this study, 63 
statistical items representing either color or texture information of 77 images were 
prepared. By a four-stage reduction, about 9 principal factors were extracted for 
automatic GMA selection. Carefully examining the principal statistics, one could 
have a change to find many clues to identify the advantage and disadvantage of 
each GMA. The clues would be useful in the development of new gamut 
mapping solutions. 
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