
  

 
 
 

An Improved Sheet Optimization Algorithm 
 

Manfred H. Breede and Peter Pille* 
 

Keywords: Algorithm, Paper Cutting, Automation, Programming, Software 
 

Abstract 
 
This paper provides an improved algorithm for sheet cutting optimization for 
identical rectangular areas to be cut out of sheets on guillotine type paper 
cutters. The algorithm provides optimization where grain direction is not a 
concern. The algorithm was tested and compared to several commercial 
software optimization programs, some of which are integral to computerized 
guillotines by a major equipment manufacturer, and all were found to be inferior 
(the criterion being the number of pieces that fit on a given area) to the 
algorithm under consideration. 
 

1. Introduction 
 
Printing as a mass communication medium requires great quantities of substrate 
to disseminate information. By far the most common substrate used for printed 
products is paper, which is purchased in roll or sheet formats. Maximizing the 
area of stock sheets when they have to be cut down to a smaller size is an 
economic concern, because any amount of waste, created in the process of 
cutting increases raw material costs proportionally. 
 
Depending on the stage to which a printing project has advanced, the 
responsibility for maximizing stock paper areas could be that of a purchasing 
agent, estimator or guillotine operator.  Prior to the widespread use of 
computers, people charged with this task have used the so-called diagram 
method. Many textbooks describe this method (Cogoli, 1973) still widely 
practiced. It entails the drawing of a diagram by trial and error and it is as such 
an effective means of optimization as long as the pieces, that have to be cut from 
a stock sheet, are few in numbers. The problem given in Figure 1.1 could 
conceivably be solved quite efficiently by this method.    
 
 
______________ 
*Ryerson University, School of Graphic Communications Management and 
School of Information Technology Management. 

491



  

 
Figure 1.1 Diagram method for a small number of pieces. 
 
If however, a great many pieces have to be cut from stock paper, (Figure 1.2) the 
diagram method is too cumbersome, because of the vast number of trials that 
could be required to find the best optimization. 
 

 
 Figure 1.2 Computer generated optimization for a large number of pieces.  
 
Hence the need for algorithms and computers that can perform these iterative 
operations nearly instantaneously (Figure 1.2). 
 

2. The Significance of Paper Grain Direction 
 
Unlike glass which is an isotropic material, many other materials including 
wood, leather, sheet metal, and machine made paper produce different effects in 
their two linear dimensions. In the case of paper we speak of the grain and cross 

492



  

grain directions. The grain direction of paper is formed on the so called wet end 
of a papermaking machine where the slurry of pulp is drained of its water 
content on a moving endless wire called the Fourdrinier (Wilson, 1998). The 
grain direction is formed because the great majority of cellulose fibers align 
themselves with the process direction, not unlike logs aligning themselves 
lengthwise as they float downstream on a river. Consequently, the properties of 
paper are different in both directions and can have profound effects on the 
working properties of paper products. For example adhesive bound books 
should have the grain direction parallel to the spine of the book in order for the 
book to lay flat when it is opened. Many more examples of the benefits of 
particular grain directions depending on the end-use of a paper product could be 
given, but this is not the place.   
 
Pads, post cards, business cards, posters, labels, stamps and many other printed 
products do not however require a preferred grain direction and can therefore 
benefit from the greater economy that optimization schemes provide.    
 
This distinction is important because optimizations for preferred grain directions 
do not require complex algorithms as the results are simply found by dividing 
each required dimension into the stock dimensions, disregarding the remainders, 
and then multiplying the integer quotients of both.  Paper stock cutting problems 
without prevailing grain directions are sometimes in the graphic arts industry 
called  “Dutch Cuts”, but for its greater clarity, they will henceforth be called 
“mixed grain” in this paper.  
 
The software output above shows therefore three results; the two prevailing 
grain direction results, and the mixed grain result that use the optimization 
algorithm described in this paper. 
 

3. The Cost of Waste in Paper Cutting 
 
Minimizing the cost of paper is usually the most important factor when 
considering the economic viability of printing projects. The proportional cost of 
paper in relation to other recurring expenses, such as printing plates, printing 
ink, chemicals, and labor has been estimated to be somewhere in the order of 
23% of printers’ cost of sales (Valentino, 2003). 
 
It is therefore of paramount importance that paper wastage is minimized in order 
to obtain a competitive edge in the communication market place.  
 
Two scenarios that demonstrate the extent of potential savings follow: 
 
Figure 3.1 shows the output of the software algorithm discussed in this paper. It 
gives three possible solutions to the problem as to how many labels measuring 7 
x 4 inches can be cut from a stock sheet measuring 45 x 35 inches.  

493



  

 
If the total number of required labels is 500,000, then the required stock sheets 
listed from the most to least waste scenario is 10,417, 9,090, and 8,929 stock 
sheets respectively.  
 
A typical paper price list (Breede, 1999) shows the price for a 35 x 45 –215M 
offset paper to be $232.20 per 1,000 sheets or 2.322 cents per sheet. 
 
Multiplying the individual number of sheet requirements by the cost of one sheet 
gives from the most expensive to the least expensive $24,188.27, $21,106.98, 
and $20,733.14. 
 
This constitutes a paper price differential of $3,455.13 between the most and the 
least efficient scenario for this press run alone. Compounding the potential cost 
savings is the fact that a typical printing company could easily process three jobs 
of this run length per 8-hour shift. 
 

 
 Figure 3.1 Three possible optimization possibilities using stock sheet size 
35x45. 
 
Possible cost savings are also achievable by selecting a favorable standard stock 
size, a variety of which paper merchants offer their customers. Given that the 
size of required labels is constant, optimization efficiency generally improves 
with larger standard stock sizes because as the ratio of  standard stock size to 
label size increases optimization possibilities also increase (Agrawal, 1993). All 
other factors, such as the weight and type of paper, being equal, the cost of paper 
per unit area is identical for all standard stock sizes.  If for example a bindery 
wanted to produce pads measuring 4 x 7 inches and had to select from two 
standard stock sizes: 35 x 45 inches (Figure 3.1), or 19 x 25 inches (Figure 3.2), 

494



  

then the better solution would be with the larger standard stock size shown in 
Figure 3.1, rather than with the smaller standard stock size shown in Figure 3.2. 
The dollar value saved is the same as the difference between the two waste 
percentages, which is 5.68 – 0.44 = 5.24%.  
 

 
Figure 3.2 Three possible optimization possibilities using stock sheet size 19x25. 
 
If for example 10,000 standard stock size sheets of 45 x 35 were needed to 
produce the required number of pads, then in the19 x 25 standard size, 5.24% 
more paper would be required to complete the order. Still using the same price 
of $232.20 per 1,000 sheets, the total price for the better optimization result 
would amount to 232.20 x 10 = $2,322.00. Using the inferior optimization 
result, would result in costs of $2,322.00 + 5.24% = $2,443.66 or an increase of 
$121.91.  
 
Better optimization results are particularly beneficial when large quantities of 
paper are consumed, in which case even small optimization improvements can 
produce significant financial returns. 
 

4. The Guillotine Cutter Principle 
 
The standard type of cutting machine used in the graphic arts industry belongs to 
a category of cutting machines called guillotine cutters, the working principle of 
which permits only cuts that form a straight line from one side of the cut to the 
opposite side.  
 
The cutting pattern shown in Figure 4.1 represents thirty-three 3 x 7 inch pieces 
cut from a stock sheet measuring 35 x 23 inches and is as such the absolute 

495



  

maximum optimization possible. However, on a guillotine cutter, this cutting 
diagram would cause the pieces to be bisected, which is clearly not permissible. 
  

 
 Figure 4.1 Non-guillotineable cutting pattern yielding 33 pieces. 
 
Although, the same stock cutting problem, when run through the software driven 
by the algorithm at issue in this paper and shown in Figure 4.2  yields one less 
piece (32)  than the solution in Figure 4.1, it is nevertheless the only allowable 
solution in view of guillotine cutters’ technical constrains.  
 

 
Figure 4.2 Guillotineable cutting pattern yielding 32 pieces. 
 

4.1. Modern Guillotine Cutters 
 
Most printers and virtually all bindery and finishing companies will require a 
guillotine cutter in their day to day operation, but in companies specializing in 
product categories such as labels, postcards, securities, pads etc., guillotine 
cutters occupy a central role. These types of products require extensive and 
potentially labor intensive cutting sequences, which greater use of automation 
could rationalize. For this reason highly automated cutting lines are equipped 
with robotics that reduce manual handling to a minimum, and relevantly in the 
context of this paper, these guillotine cutters are programmable (Kippan, 2001). 

496



  

Cutting programs are generated upon the operator’s input with regard to 
production specifications such as stock sizes, required sizes, trims, and cutouts. 
Optimization is then calculated according to the net area available, cutting 
sequences are determined and are subsequently carried out automatically. 
 
The algorithm at issue in this paper deals exclusively with the fundamental 
problem of finding the best optimization solution of a net available area 
subsequent to input of all other production parameters. 
 

5. The Complexity of Stock Cutting Problems in the Graphic Arts Industry 
 
Dyckhoff (1992) classifies optimization problems according to several 
conditions, one of which he calls pattern restrictions. Accordingly, there are two 
types of patterns: orthogonal and non-orthogonal. The cutting problems 
investigated in this paper belong to the orthogonal category, which means that 
pieces must be parallel to the edges of the stock paper and may be mutually 
perpendicular to each other. Furthermore, Dyckhoff distinguishes between 
nested and guillotine orthogonal patterns, the former being characterized by the 
example given in Figure 4.1 and the latter shown in Figure 4.2, is applicable to 
the algorithm discussed here. 
  
In contrast to the sheet metal, leather processing, or textile industries where 
stock cutting problems of composite sizes and irregular shapes have to be 
considered (Sharma, R. et al., 1997), typical stock cutting problems in the 
graphic arts industry usually require only identically sized rectangular stock 
sheets and pieces. This reduces the complexity of the problems significantly and 
makes the creation of optimal solutions more likely. 
 

6. Sheet Cutting Optimization 
6.1. Problem Formulation and Notations 

 
The objective is to fit as many as possible of identical small rectangular sheets 
inside a larger rectangular sheet so that the larger sheet can be cut into the small 
individual sheets with a series of guillotine cuts. All dimensions and areas in the 
following are positive integers, without loss of generality. Figure 6.1 shows a 
possible arrangement and where the initial guillotine cut is made. 
 
Basic definitions: 
 
Small sheet dimensions: 
 horizontal (initially):  sx 
 vertical (initially):  sy 
In the following descriptions and, the small sheet is always initially orientated so 
that sx is defined to be measured in the horizontal direction, but when the small 
sheet is rotated 90 degrees, sx will measure the vertical dimension. 

497



  

  
 Large sheet dimensions: 

horizontal:  lx 
vertical: ly 

For the large sheets, lx always measures the horizontal direction, including after 
rotation of the sheet. 
 

 
 
 
 
 

Figure 6.1 
 
 

 
 
 
 
 
 
 
 
We assume that a small sheet does indeed fit within the larger sheet, or  

one of sx or sy <= lx 
and the other of sx or sy<= ly 

 
In this paper two basic techniques are described to find the maximum number of 
small sheets that can be fit inside the large sheet. These two techniques use 
different ways of placing the small sheets, and the best result of the two 
techniques is the chosen optimum. The first method is labeled Horizontal, 
described in section 6.2, and the second method is labeled Diagonal, described 
in section 6.3. The two methods can also be combined into one algorithm. 
Examples of the methods are given in section 6.4. 
 
Numerous papers have been written about optimizing small pieces of different 
sizes and shapes:  Christofides (1995), Hadjiconstantinou (1995),  Nelissen 
(1995), Herrmann (2001), Delalio (2001), Kroeger (1995), Sharma et al. (1997), 
Papers dealing with the problem of optimizing identically shaped and sized 
pieces on rectangular stock sheets are fewer; included are Agrawal (1993) and 
Arslanov (2000). Agrawal proposes a solution that is similar to our approach, 
however we add one additional method plus a hybrid method. 
 
 
 

  

 

 

   

lx 

 

ly 

sx 

sy 
Cut horizontally here. 
Case (a) shown. 

Unused horizontal area  
Case (a) placed at bottom of large sheet 
Case (b) placed between the top and bottom blocks of 
small sheets as part of the top block of small sheets. 

498



  

 
6.2. The Horizontal Method 

 
As shown in Figure 6.1, a block of small sheets of one orientation is fit at the top 
of the large sheet, starting at the left, filling as much as possible along a row, 
with the sx dimension parallel to the lx dimension. A second block of small 
sheets oriented 90 degrees to the direction of the small sheets in the first block is 
fit in the bottom portion of the large sheet, in order to maximize the total area 
utilized of the large sheet. In the large sheet, unused area may result at the right 
of both the top block and the bottom block, also below the bottom block. The 
unused area at the bottom may also be placed between the top and bottom blocks 
of small sheets. It is then necessary to determine the optimal number of rows in 
each block. 
 
In these procedures, once we chose the orientation of the small sheets as labeled 
sx, sy, that is the orientation we will always chose for the small sheets at the top 
of the large sheet. Then we rotate the large sheet only, to find other 
combinations of blocks of small sheets for a best fit. The large sheet is always 
cut horizontally at the line where the small sheets change orientation. The 
procedure is repeated for the two cut sheets recursively, until no better fit of 
small sheets in 90 degree orientations can be found. The concept behind this 
method is similar to that described in Agrawal’s (1993) paper. 
 
Section 6.2.1 describes the determination of the number of rows in each block to 
maximize the area of the large sheet that is used by the small sheets. 
 

6.2.1 Optimal horizontal placement of two blocks of small sheets 
 
More definitions: 
 
Number of rows of small sheets: 

In the top block:   rt 
 In the bottom block:  rb 

 
Number of columns of small sheets: 
 In the top block:   ct  = int( lx / sx ) 

In the bottom block:  cb = int( lx / sy ) 
(where int(n) is the integer portion of n) 

 
Area of the blocks of small sheets:  
 In the top block:   At = rt ct sx sy 
     = rt kt 
 In the bottom block:  Ab  = rb cb sx sy 

     = rb kb 
Total area used by the small sheets: AT  = At + Ab 

499



  

 
Unused area of the large sheet: 
 Case (a) 
 To the right of the top block: Ut = lx rt sy – At 

To the right and bottom of the  
bottom block:   Ub = lx (ly –  rt sy) – Ab 
Case (b) 
To the right and bottom 
of the top block:   Ut = lx (ly –  rb sx) – At 
 To the right of the bottom block: Ub = lx rb sx – Ab 
 
Total unused area:  UT = lx ly –  At  – Ab 

 
The problem to determine the number of rows (rt and rb) in each block of small 
sheets can be formulated as the maximization of the objective function: 
 
 At + Ab = rt kt + rb kb  (1) 
 
or minimization of the unused area: 
 

UT = lx ly –  At  – Ab 
 
Subject to: 

rt sy  + rb sx <= ly   (2) 
where rt, rb >= 0   (3) 

 
Contraints (2) and (3) can be re-written as: 
 0 <= rt  <= (ly – rb sx) / sy  (4) 
and 
 0 <= rt = int ((ly – rb sx) / sy)  (5) 
since we want the maximum in (1) and the integer portion. 
 
Then (1) becomes: 
 At + Ab = int ((ly – rb sx) / sy) kt + rb kb (6) 
 
Since there is only one variable, rb, in (6), and in printing we do not have very 
large numbers of rows, (6) can be solved for the maximum by simple iteration. 
Thus 

 rb = 0, 1, 2, 3, …int (ly / sy) 
  
Once a maximum is obtained, the large sheet can be cut where the small sheets 
change orientation. However, there is also a need to check whether a 90 degree 
orientation of the large sheet might give better results. This is described in the 
next section, as well as the recursive application of the above. Note there may be 
more than one maximum for (6) for different values of rb, which implies that we 

500



  

should follow each of the possible the branches of a tree structure until the path 
to the best branches are determined. In practice, however, we have found that 
following every branch at equal maximums did not improve the results over that 
where we followed only one of the branches leading from one of the maximums. 
 

6.2.2. The Sheet Cutting Horizontal Algorithm 
 
A common method for solving problems with multiple possible outcomes is the 
tree search procedure, also described by Agrawal (1993), and Christofides et al. 
(1995). The branches of the tree are followed to find the maximum used area of 
the large sheet. At each branch, the large sheet may be cut horizontally to create 
two new large sheets and the procedure is repeated for the two new large sheets 
for the top and bottom sections. An example is shown in section 6.4.1 and 
Figure 6.3. The horizontal cut may be made with the unused horizontal area 
placed at the bottom of the bottom block (Case (a)), or at the bottom of the top 
block (Case (b)) where the cut is made below the unused area. Both branches of 
the tree must then be followed. 
 
1. Select an orientation for the small sheet for the top block of small sheets. 
Which orientation is chosen is arbitrary, unless of course one of the small sheet 
dimensions is larger than one of the large sheet dimensions. 
 
 2. The large sheet can initially also be oriented in one of two ways, with a 90 
degree rotation (clockwise or counter clockwise). This forms the initial 
branching of the tree. The orientation that ultimately results in the least unused 
area of the large sheet provides the solution. Thus the following steps are 
repeated for each orientation. 
 
Set the initial   Ati = 0,  Abi = 0; i  = 0.  
 
3. For the values of  lx, ly, sx, and sy: 
 
The maximum area of the small sheets in the top and bottom blocks  
AT = At + Ab in (1) is determined by iterating rb 

rb = 0, 1, 2, 3, …int (ly / sy) 
 
Thus  rt = int ((ly – rb sx) / sy) (from (5) 

 
and this establishes where the horizontal cut of the large sheet would be made. 
However, since there may be more than one combination of rt and rb at the 
maximum AT = At + Ab, we would expect that we should follow each 
combination as a branch in the tree. However, if there is more than one 
combination of rt and rb that give the same area in this algorithm we take the first 
maximum only.  
 

501



  

4. For the current iteration i the procedure is complete in the current branch if no 
improvement is found in the area utilized by the small sheets: 

• ATi ~> Ati-1 or  ATi ~>  Abi-1 
depending on whether we are following the top or bottom branch. 

 
If both rti and rbi are greater than zero at a maximum of Ati + Abi, the large sheet 
may be cut horizontally to create two new large sheets where the small sheet 
blocks change orientation. This creates four possible branches to follow: top and 
bottom for Case (a), and top and bottom for Case (b). 
  
5. Each of the top and bottom blocks is then considered for further processing 
for the next iteration . 
 
For the top block: 
If the total unused area associated with the top block Uti = 0  then the procedure 
is complete for that block. Otherwise it becomes a new large sheet but is rotated 
90 degrees. The rotation is necessary to force consideration of both orientations 
of the small sheets as possible solutions for the next iteration i +1: 

• sx and sy remain the same as before. 
Case (a):    Case(b): 
• lxi+1 = rti sy   lxi+1 = lyi –rbi sx 
• lyi+1 =  lxi    lyi+1 =  lxi 
• Repeat from Step 3 
 

For the bottom block: 
If the total unused area associated with the bottom block Ubi = 0 then the 
procedure is complete for that block. Otherwise it becomes a new large sheet but 
is rotated 90 degrees. The rotation is necessary to force consideration of both 
orientations of the small sheets as possible solutions for the next iteration i +1: 

• sx and sy remain the same as before.  
Case (a):    Case (b): 

• lxi+1 = lyi - rti sy   lxi+1 = rbi sx 
• lyi+1 =  lxi    lyi+1 =  lxi  
• Repeat from Step 3 

 
The branches at the end of the tree that sum to the least unused area UT provide 
the optimal solution. What remains after the above steps are completed is to 
continue cutting the small sheets from each large sheet, which is not described 
further here. 
 

6.3. The Diagonal Method 
 
The method in this section involves placing an orientation of small sheets at the 
top and left sides of the larger sheet (the “top” section – an inverted L shape), 

502



  

and abutting a block of small sheets oriented 90 degrees to the previous small 
sheets, below and to the right (the “bottom” block), as shown in Figure 6.2. For 
the maximum utilization of the large sheet, the optimum values of rows and 
columns of each orientation must be determined. 
 
For the small sheet dimensions, sx is the dimension parallel to lx in the “top” 
section; sy is the dimension parallel to ly in the “top” section. 
 
The maximum number of columns c along at the top of the “top” section is a 
constant: 

c = int (lx / sx) 
The maximum number of rows r along the left of the “top” section is a constant: 
 r = int (ly / sy) 
The number of rows at the top of the “top” section is rt. The number of columns 
at the left of the “top” section is ct. The number of rows of the “bottom” block is 
rb; the number of columns is cb. 
 
 
Areas of the sections of small sheets:  
 In the “top” block:  At = rt c sx sy + (r – rt) ct sx sy 
 In the “bottom” block:  Ab = rb cb sx sy 
 
The unused area of the large sheet is thus: 
 UT = lx ly –  At – Ab 

 
 
The problem to determine the number of rows and columns of small sheets (rt, 
ct, rb, cb) can be formulated as the maximization of the objective function: 
 

lx 

 

ly 

rt rows 

rb rows 

ct  
columns 

cb  
columns 

Figure 6.2 

c columns 

r 
rows 

503



  

 AT = At + Ab =  rt c sx sy + (r – rt) ct sx sy+ rb cb sx sy  (7) 
 
Subject to: 

ct sx  + cb sy <= lx   (8) 
rt sy  + rb sx <= ly   (9) 
where rt, rb ct, cb >= 0  (10) 
 

Contraint (8) can be re-written as: 
 0 <= cb <= (lx – ct sx) / sy   (11) 
and 
 0 <= cb = int ((lx – ct sx) / sy) (12) 
since we want the maximum in (7) and the integer portion.  
 
Similarly, constraint (9) can be re-written as: 
 0 <= rb <= (ly – rt sy) / sx   (13) 
and 
 0 <= rb = int ((ly – rt sy) / sx) (14) 
 
Thus the objective function (7) contains two variables rt and ct and becomes: 
 

At + Ab =  rt c sx sy + (r – rt) ct sx sy  
+ int ((ly – rt sy) / sx) int ((lx – ct sx) / sy)  sx sy  (15) 

 
The maximum of (15) can be obtained by iterating with all possible combination 
of values of rt and ct: 
 rt = 0, 1, 2, … int (ly / sy) (16) 
 ct = 0, 1, 2, … int (lx / sx) (17) 
 
Note that there may be multiple solutions for rt and ct at the maximum of (15). If 
at the maximum of (15) rt  or ct are at the limits in (16) or (17), then the problem 
reverts to the Horizontal case (no L shape for the “top” section). 
 

6.4. Examples 
 
In these three examples, the Horizontal and Diagonal methods are applied. In the 
first two examples, each method is used separately and the results are compared 
– in one the Horizontal method is superior, in the other the Diagonal method is 
superior. In the third example, the methods are mixed, with the Diagonal method 
also used for each of the top and bottom sections determined by the Horizontal 
method at each branch. 
 
The examples illustrate that there may be many solutions with the same area 
utilization of the large sheet.  A mix of the Horizontal and Diagonal methods, 
with the Diagonal method providing another branch of the tree to follow, 
provides a greater chance of obtaining a better solution. 

504



  

 
6.4.1. Example One - Horizontal Method Superior 

 
The small sheet is 7 x 3 = 21. The large sheet is 51 x 32 = 1632. The solution is 
shown in Figure 6.3, leaving 15 units of unused area, which is less than the area 
of a small sheet, as determined by the Horizontal Method in section 6.2.2. Three 
guillotine cuts are required to separate the blocks of small sheets, which would 
then be followed by cutting out the individual small sheets. The Diagonal 
method in this case provides multiple solutions with a greater unused area of UT 
= 79 and UT = 36 for the two orientations of the large sheet, as shown in Table 
6.1. 
 

 
Figure 6.3 
 
Table 6.1. Example 1 - Diagonal Method for large sheet 51 x 32 and small 
sheets (sx x sy,) = (7x 3) 
 

 (lx x ly) = (51 x 32) 
  AT = 1553   UT = 79 

(lx x ly) = (32 x 51) 
AT = 1596   UT = 36 

ct 3 1 2 3 2 2 
rt 1 6 6 6 3 0 
cb 10 14 12 10 6 6 
rb 4 2 2 2 6 7 

 
Table 6.2 shows the iteration and branching pathways for the Horizontal Method 
of section 6.2.2. Only Case (a) is shown for simplicity, and only for one initial 
orientation of the large sheet (lx x ly) = (51 x 32). Four iterations are shown, and 
in this simple example, each of the branches is part of the optimal solution 
(other optimal solutions or branches are not shown). At each iteration the large 
sheet is cut into the Top and Bottom blocks, into successively smaller sections 
where the branching occurs. The final solution for the total area used by the 
small sheets is given by the sum of the end branches ( 21 + 126 + 756 + 714 = 
1617). 
 
 
 
 
 
 

505



  

 
Table 6.2 Example 1 – Horizontal Method for large sheet (lx x ly) = (51 x 32)  
and small sheets (sx x sy,) = (7x 3). Final AT = 1617      UT = 15 
i  

(lx x ly) = (51 x 32)   
AT = 1596      UT = 36 

 
 
1 Top 

(lx x ly) = (51 x 18)  
rt = 6 

At = 882    Ut = 36 

Bottom 
(lx x ly) =  
(51x 14)  
rb = 2 

Ab = 714 
Ub = 0 

(lx x ly) = (18 x 51)    
 AT = 882     UT = 36 

 
 
2 Top 

(lx x ly) = (18 x 9)   
rt = 3 

At = 126   Ut = 36 

Bottom 
(lx x ly) = (18 x 42) 

rb = 6 
Ab = 756    Ub = 0 

 

(lx x ly) = (9 x 18)     
At = 147   Ut = 15 

 
 
3 Top 

(lx x ly) =(9x3) 
rt = 1 

At = 21 
Ut = 6 

Bottom 
(lx x ly) =(9x15) 

rb = 2 
Ab = 126   
Ub = 9 

(lx x ly) =(3x9) 
AT = 21 
UT = 6 

(lx x ly) =(15x9) 
Ab = 126 
Ub = 9 

 
 
 
4 Top 

(lxx ly) 
=(0x0) 
rt = 0 
At = 0 
Ut = 0 

 

Bottom 
(lx x ly) 
=(3x9) 
rb = 1 

Ab = 21   
Ub = 6 

Top 
(lxx ly) 

=(15x9) 
rt = 3 

At = 126 
Ut = 9 

 

Bottom 
(lx x ly) 
=(0x0) 
rb = 0 
Ab = 0   
Ub = 0 

 

 
 

6.4.2. Example Two - Diagonal Method Superior 
 
The small sheet is 7 x 3, the large sheet is 50 x 40. The Diagonal Method 
solution is shown in figure 6.4 and Table 6.3, with the unused area UT = 26 for 
the (50 x 40) orientation, and UT = 47 for the (40 x 50) orientation. The best 
obtained with the Horizontal Method is UT = 47. 
 

506



  

 
Figure 6.4. 
 
Table 6.3. Example 2 - Diagonal Method for large sheet 50 x 40 and 
small sheets 7 x 3.  (sx x sy,) = (7 x 3) 

 (lx x ly) = (50 x 40) 
AT = 1974   UT = 26 

(lx x ly) = (40 x 50) 
AT = 1953   UT = 47 

ct 2 1 
rt 4 0 
cb 12 11 
rb 4 7 

 
 

6.4.3  Hybrid  Horizontal and Diagonal Methods 
 

The algorithm that incorporates the Horizontal and Diagonal methods is 
diagramed in Figure 6.5. An example of the result is shown in Figure 1.2 for 
larger sheets 9,885 x 6,165 and small sheets 312 x 91. Starting with the large 
sheet (x x y), the Horizontal method is called twice, once for orientation (x x y), 
and once for the reversed orientation (y x x), shown by the circle with the letter 
H. Similarly, the Diagonal method is called, once for (x x y), and once for the 
reversed orientation (y x x), shown by the circle with the letter D. These four 
form the initial branches of the tree to search for the highest utilization of the 
area of the large sheet by the small sheets. The Diagonal method branches do 
not branch further. 
 
The Horizontal branches, however, split into another four further branches. The 
current “large sheet” is cut horizontally forming the top and bottom sections, 
each of which become new “large sheets”with the x and y dimensions reversed.  
There are two top sections (case (a) and case (b)), and two bottom sections (case 
(a) and case (b)). Recall that in case (a) any unused horizontal area is kept with 
the bottom section, and in case (b) any unused horizontal area is kept with the 
top section.  
 
Each of the four Horizontal branches is further split into three branches. The 
Horizontal method is called recursively, and the Diagonal method is called 
twice, reversing the current “large sheet” x and y dimensions. 
 

507



  

The process continues in this manner, with the Horizontal branches continuing 
to create more branches, while the Diagonal branches terminate. The Horizontal 
branches terminate when the condition stated in section 6.2.2, step 4 is met. The 
information from a terminating node is passed back up to the previous node, 
where the total area utilized by the small sheets is compared. The data from the  
branch with the highest area is passed further up to the higher node, while the 
other results are discarded. If there is more than one solution at a node with the 
same total area utilized, only one is chosen. Note that solutions with different 
resulting configurations (but the same total area utilization) may be obtained by 
reversing the initial x and y dimensions provided to the algorithm (for both the 
large and small sheets).  
 

 
 
 

 

H H D D 

Start 
x x y 

x x y y x x y x x x x y 

H 

H H H H D D D D D D D D 

(a) 

+ + 

(b) 
OR 

        

OR OR OR 

OR OR OR OR OR OR OR OR 

Top 
    Bottom 

Top 
      Bottom 

Figure 6.5 

508



  

7. Conclusion 
 
1. There are often multiple solutions for optimum arrangement of identical small 
rectangular sheets within a large rectangular sheet. The Horizontal Method 
involves repeated division of the large sheet into smaller sheets, making 
horizontal cuts each time, where each of the two resulting sheets has orthogonal 
orientations of rectangular blocks of the smaller sheets. The Diagonal Method 
also involves orthogonal arrangement of sections of the smaller sheets, but one 
of the sections is “L” shaped, while the other is rectangular. 
 
2. The Horizontal Method branches to as many levels as necessary, with each 
branch or iteration generating more orthogonal blocks. It was found that the best 
optimization results required in the great majority of cases only two or three 
blocks, and only in a very small number of cases were four or more blocks 
required. This trend indicates that although even better optimization results 
should be possible beyond the fourth orthogonal block, the probability of this 
occurring diminishes with each additional block. Furthermore, additional 
orthogonal blocks reduce the possible unused area to a point where the resulting 
solutions would become too small for practical applications.     
 
3. In some cases the Horizontal Method by itself provides one or more optimum 
arrangements, in other cases the Diagonal Method by itself provides one or more 
optimum, or both methods find an optimum which may differ, but utilize the 
same area of the large sheet. In general, however, a combination of the two 
methods, where each step of the Horizontal Method also has the Diagonal 
Method applied to each of the two sub-sheets, may provide other optimum 
arrangements or a better solution than either method alone. 
 
4. The Horizontal and Diagonal algorithms were implemented in Visual Basic 
.Net code and its performance was tested against several commercial 
optimisation programs. In no instance were the results obtained inferior and 
often the results were superior. Processing time on an Intel II processor was 
under one second with the most complex problems. As a fast and robust 
algorithm it could therefore find application as an efficient cutting pattern 
generator for programmable guillotines. 
 
 
 
 
 
 
 
 
 

 

509



  

References 
 
Agrawal, P.K., “Minimizing trim loss in rectangular blanks of a single size from a 

Rectangular sheet using orthogonal guillotine cuts”, European Journal of 
Operational Research 64, pp. 410-422, 1993. 

 
Arslanov, M.Z., “Continued fractions in optimal cutting of rectangular sheet into equal  

small rectangles”, European Journal of Operational Research 125, pp. 239-248, 
2000. 
  

Breede, M.H., “Handbook of Graphic Arts Equations”, Sewickley, PA: Graphic 
 Arts Technical Foundation, p. 22, 1999. 
 
Christofides, N., Hadjiconstantinou, E., “An exact algorithm for orthogonal 2-D 

cutting problems using guillotine cuts”, European Journal of Operational 
Research 83, pp. 21-37, 1995. 

 
Cogoli, J.E., “Photo-Offset Fundamentals”, Bloomington, Ill.: McKnight Publishing  
 Company, p. 304, 1973. 
 
Dyckhoff, H., Finke U., “Cutting and Packing in Production and Distribution:  
 A Typology and Bibliography”, Heidelberg, Germany: Physica-Verlag, 1992. 
 
Herrmann, J., Delalio, D., “Algorithms for Sheet Metal Nesting”, IEEE Transactions on  
 Robotics and Automation, Vol. XX, pp. 100-107, 2001. 
 
Kippan H., “Handbook of Print Media” , Heidelberg, Germany: Springer-Verlag,  
 pp. 782-789, 2001. 
 
Kroeger, B., “Guillotineable bin packing: A genetic approach” , European Journal of   
 Operational Research 84, pp. 645-661, 1995. 
 
Nelissen, J., “How to use structural constraints to compute an upper bound for the  
 pallet loading problem”, European Journal of Operational Research 84,  
               662-680, 1995.              
 
Sharma R.,  Balachander, T., McCord, C., Anand, S., Zhang, Q., “Genetic Algorithms  

For the Single-Sheet and Multi-Sheet Non-Convex Cutting Stock Problem”, 
Cincinnati, OH: University of Cincinnati, 1997. 

 
Valentino, C., “Saving Paper Money.” Print Profit, - Volume 4 – Number 2, 

Paramus, NJ: National Association for Printing Leadership, Summer 2003. 
 
Wilson L.A., “What The Printer Should Know About Paper”, third edition,  
 Sewickley, PA: Graphic Arts Technical Foundation, pp. 232-235, 1998. 
 

510




