

Integration Patterns
Applied to Print Production

Claes Buckwalter*

Keywords: messaging, integration, pattern language, JMF, JDF

Abstract: In a modern printing plant software systems are ubiquitous
and indispensable. Systems for order management, production planning,
and other administrative systems are implemented in software. Most, if
not all, equipment on the plant floor has a software front-end that either
controls the physical equipment directly or displays instructions for a
human operator to interpret and execute. These software systems are not
isolated islands. During production they need to communicate and
exchange information. For example, a prepress workflow system may
send configuration parameters to production equipment and production
equipment may send status updates to production monitoring systems.
This type of communication is typically implemented by sending
messages, discrete units of data, between the systems.

Integrating heterogeneous systems using messaging is nothing unique to
the printing industry. It is a well-proven solution and there are several
general-purpose solutions available for integrating disparate systems
using messaging. The experience and knowledge on the subject has been
documented in several pattern languages.

This paper examines Job Definition Format’s messaging protocol Job
Messaging Format (JMF), and maps JMF concepts to patterns found in
pattern languages for system integration using messaging. Weaknesses
found in JMF are discussed and patterns are applied to suggest
alternative solutions. The result is JMF expressed using general
enterprise integration patterns.

* Digital Media division, ITN, Linköping University, Sweden

2006 TAGA Proceedings 54

1 Introduction
Software systems play a vital role in a modern printing plant.
Management Information Systems (MIS), workflow systems, and
prepress systems that process digital content are implemented entirely in
software. Most equipment on the plant floor has a software front-end
that controls the physical equipment directly or displays instructions for
human operators to interpret and execute.

Efficient print production requires that the software systems can
communicate. Digital content, job specifications, configuration
parameters, and tracking data need to be exchanged between systems
continuously during production. Integrating the heterogeneous systems
in the printing plant is crucial.

The integration technology with the widest acceptance in the printing
industry is Job Definition Format (JDF), maintained by the industry
consortium CIP4 [7]. The JDF specification [4] defines an XML-based
data format, a “job ticket format”, that allows systems in the print
production workflow to describe printed products, and the workflow
required to produce them, in a standardized manner. Included in the JDF
standard is an XML-based communication protocol called Job Messaging
Format (JMF). JMF allows systems to exchange units of data, messages,
containing control commands, JDF job ticket data, and tracking
information.

Integrating disparate systems using messaging is not unique to the
printing industry; the principles behind JMF are similar to those of
general-purpose integration solutions such as Web Services and
message-oriented middleware [10]. Best practices and solutions to
reoccurring problems within the area of system integration using
messaging have been documented in several pattern languages [1, 3, 8, 10].
Originally used in architecture [2], then in object-oriented software
design [9], a pattern language is a collection of reusable solutions,
patterns, which can be used to solve problems in a particular problem
space.

This paper provides an analysis of JMF and classifies the concepts found
in JMF using patterns found in patterns languages for system integration
and service interaction [1, 3, 8, 10]. JMF supports the concept of message
routing performed by intermediate systems, for example a workflow
system that routes messages to/from systems under its controls. This is
beyond the scope of this paper, which focuses on direct point-to-point
communication between systems without an intermediary.

2006 TAGA Proceedings 55

2 The Communication Models of JMF
The JDF specification [4] defines two communication models for JMF
messaging: “unidirectional” and “bidirectional” messaging. Most JMF
messaging is of request-reply type where a system sends a request
message and gets a reply message back. The bidirectional
communication model of JMF uses the HTTP protocol for message
transport. HTTP is a bidirectional in the sense that a system sending a
request gets an immediate reply on the same communication channel as
the request was sent. The unidirectional communication model uses files
for message transport. A system sends a request by writing a file to a
location and receives a reply by reading a file from another location. The
file-based protocol is unidirectional in the sense that a request does not
receive an immediate reply. Instead, the reply is received over a separate
channel.

This section classifies the two communication models of JMF based on
the level of decoupling between sender and receiver.

2.1 File-Based JMF Messaging
Exchanging information between systems by reading and writing files is
a common integration style. In the graphic arts industry this integration
style is called “hot folder” integration and has a long history of use in
prepress workflows where it is used to automate the exchange and
processing of content files, such as PDF documents.

In a file-based JMF messaging scenario each system is configured with
an input folder that it uses to receive files containing JMF messages. A
system’s input folder can be regarded as the channel that the system uses
to receive messages from one or more other systems. A system sends a
message by writing a file containing the message to the input folder of
the receiving system. The sender’s message contains a URL that specifies
a file (a channel) to which the receiver can write a reply message.

The JDF specification [4] describes file-based JMF messaging as
unidirectional and asynchronous. Unidirectional in that separate channels
are used for sending and receiving messages; a single channel is never
use for both. Asynchronous in that a system can send a message without
requiring that the receiver be available at the time of sending. The sender
and receiver are decoupled by the file system that provides an
infrastructure for messaging while ensuring a loose coupling between
systems. The file system can be viewed as a primitive form of message-
oriented middleware or messaging system [10].

2.2 HTTP-Based JMF Messaging
The Hypertext Transfer Protocol (HTTP) is the network transport protocol
used to transfer web pages between web servers and web browsers.

2006 TAGA Proceedings 56

HTTP is also used by Web Services standards as the transport protocol
for exchanging business data between heterogeneous and distributed
applications. JMF has several similarities to Web Services standards.

HTTP-based JMF messaging requires that each system implement a
HTTP client and a HTTP server. The sender of a message uses its HTTP
client to open a HTTP connection to the address of the receiver’s HTTP
server. A HTTP request containing a JMF message is sent over the
connection. The receiver’s HTTP server receives the request, process the
message and replies using a HTTP response containing a reply JMF
message. The request and reply messages are both sent over the same
HTTP connection.

HTTP-based JMF messaging is described by the JDF specification as
bidirectional and synchronous. The communication is bidirectional in that
the HTTP connection the sender uses to connect to the receiver is used to
send both the request JMF message and the reply JMF message. The
communication is synchronous in that both sender and receiver must be
available at the time of sending and that the sender blocks until the
request message is sent and a reply received back. This type of
communication is often called Remote Procedure Call (RPC) [10] because it
is similar to invoking a procedure or method in a programming
language. JMF messaging is not the only example of using the HTTP
protocol for RPC communication; most Web Services standards, for
example SOAP [11], use this approach.

The synchronous nature of HTTP-based JMF messaging, and RPC in
general, entails a tight coupling between the systems involved in the
communication.

2.3 Coupling
Coupling is an important concept that applies at all levels in software
design. It is generally considered good design to strive for as loosely
coupled, decoupled, software components that have a minimum number
of dependencies on each other. Systems assembled of loosely coupled
components tend to be flexible and allow a component to be modified or
replaced with a minimum of impact on other components. The JDF
specification’s classification of file-based JMF messaging as
“asynchronous” and HTTP-based JMF messaging as “synchronous”
indicates the degree of coupling between systems in these two types of
communication. However, a more precise classification of the two types
of JMF messaging is desirable.

Eugster et al. [8] have identified three dimensions of (de-)coupling in the
domain of communication middleware. These dimensions have been
formalized by [1] and used to classify common middleware solutions.
The three dimensions of decoupling are:

2006 TAGA Proceedings 57

• Time decoupling – the sender and receiver of a message do not
need to be active at the same time.

• Space decoupling – a message is sent to a symbolic address, not
the direct address of a system.

• Synchronization decoupling – senders do not block while sending a
message and receivers are notified by a callback when a new
message is available.

Using these three dimensions the two communication models of JMF
messaging can be classified, see Table 1. A set of notational elements for
each possible combination of couplings has also been developed [1]. The
notations corresponding to file-based and HTTP-based JMF messaging
are shown in Figure 1.

Table 1 Decoupling of file-based and HTTP-based JMF messaging

 Time
decoupling

Space
decoupling

Synchronization
decoupling

File-based JMF Yes Yes Blocking send
Blocking receive

HTTP-based JMF No No Blocking send
Non-blocking receive

Figure 1 Decoupling configuration notations [1] for file-based (left)

and HTTP-based (right) JMF messaging

File-based JMF messaging provides the highest degree of decoupling
between communicating systems and has a classification similar to
message-oriented middleware systems [1]. The file system acts as a
primitive messaging system [10] that decouples sender and receiver. A
sender can write a message file to the file system without the receiver
being active. A sender sends a message by writing a file to a URL which
points to a path in a file system, not directly to the receiving system.
When a system sends a JMF message the thread sending the message
typically blocks until the file has finished being written to the file system.
To receive messages a system typically has a thread that scans the file
system at a specified time interval – the Polling Consumer pattern [10].

2006 TAGA Proceedings 58

When the thread discovers that a file it blocks until the file is read, the
message processed, and possibly a reply message sent. To summarize,
file-based JMF provides space decoupling and time decoupling but the
blocking send and receive characteristics result in limited
synchronization decoupling.

Systems participating in HTTP-based JMF messaging are both space
coupled and time coupled. A system sending a JMF message connects
directly to the receiver and both systems are active during the delivery of
the message. The message-sending thread of the sender typically blocks
until the message has been sent and a reply is received. Receiving a JMF
message is typically non-blocking. For each message received by a
system a new thread is started that handles message processing and the
sending of a reply – the Event-Driven Consumer [10] pattern.

While HTTP-based JMF messaging inflicts a higher coupling between
communicating systems it is often considered less complex to implement
the messaging endpoints of a system with these characteristics. The
blocking send combined with time coupling relieves the sender of
managing any state information related to the message being sent. This is
managed by the programming language’s call stack. In a time decoupled
system the sender would have to store the context to which the message
is related so that when a reply is later received the context can be
recreated and processing continue.

In practice, HTTP-based JMF messaging is the communication model
implemented by the majority of JDF-enabled systems. The JDF
specification [4] implicitly favors HTTP messaging and the Base ICS [5]
explicitly requires that systems of base conformance level 2 and upwards
support HTTP-based messaging. In fact, file-based JMF messaging is not
required at all by the Base ICS. Instead, a hot folder exchange of JDF
instance files is required that is based on the same principles as file-
based JMF messaging.

The rest of this paper describes JMF from the point of view of HTTP-
based JMF messaging.

3 Patterns in JMF
Two pattern languages that describe the integration and interactions of
distributed heterogeneous systems are [10] and [3]. This section uses
these two pattern languages to examine JMF and identify where the
design choices made for JMF correspond to the documented patterns.
The patterns identified are summarized in Appendix A.

3.1 Message Format
In essence, the JDF job ticket format and Job Messaging Format (JMF) are
Canonical Data Models [10] that standardize the data exchange between

2006 TAGA Proceedings 59

systems in the print production workflow. Each system may use its
proprietary data model internally, but must be able to export and import
data according to the canonical data model defined by the JDF
specification [4].

As JDF evolves, new versions of the specification are released. Each new
version of the JDF specification results in a new version of the XML
schema that defines the syntax of the JMF message format. In addition, a
JMF message can be conformant with several Interoperability Conformance
Specifications (ICS) [6], each of which may have multiple versions. For a
system to know how to process a message it needs to able to identify the
version and format of the message received. JMF solves this by
implementing the Format Indicator [10] pattern. Each JMF message
contains version number fields and identifies the XML schema(s) that the
message’s syntax adheres to.

The fundamental JMF messaging interaction is point-to-point request-
reply and can be mapped to the Send/Receive [3] and Remote Procedure
Invocation [10] patterns. A request message is sent by one system and
received by another system; the receiver processes the message and
sends a reply message back to the requestor. In a HTTP-based JMF
messaging scenario the reply message can be sent synchronously on the
same channel as the request message or asynchronously on a separate
channel.

Implementing the Send/Receive pattern requires the each message be
uniquely identifiable. All JMF messages therefore have a unique
identifier, a message ID. A system receiving a reply to a request message
it previously sent must be able to correlate the reply message with the
original request. Therefore, a system sending a reply is required to
specify the ID of the original request message in the reply message. This
corresponds to the Correlation Identifier [10] pattern.

In the case of a synchronous message reply, the replier sends the reply
message over the same channel as it received the request message; the
reply message is sent using a HTTP response to the request message’s
HTTP request over the same HTTP connection. If the requesting system
accepts asynchronous replies, the request message contains a Return
Address [10] that may be used by the receiving system to send the reply
message; in this case the request and reply are sent over separate
channels.

Some JMF message types are used to move large amounts of data
between systems. An example is the JMF SubmitQueueEntry message that
is used to submit a print job, consisting of a JDF instance file and high-
resolution content files, to a system for execution. JMF supports sending
all files related to the print job in a single large message called a MIME
package [4]. However, this is often an inefficient approach, especially in
the case where the print job, including all related files, must be delegated

2006 TAGA Proceedings 60

to another system for execution. As a more efficient alternative, JMF
implements the Claim Check [10] pattern. Instead of sending the JDF
instance file and the content files in a single JMF message, a system can
choose to send a JMF message containing a URL, a claim check, which
points to the JDF instance file. The JDF instance file, in turn, contains
URL references to the content files. The receiving system can use the
claim check URL to first retrieve the JDF instance file, and then retrieve
the relevant content files.

3.2 JMF Message Families
The JDF specification [4] divides JMF messages into six message families,
each family consisting of messages of different types used for specific
purposes. For example, the message of type QueueStatus falls under the
Query message family and is used to request the state of a system’s
queue. There are 44 message types in total.

The six message families of JMF correspond to three message
construction patterns documented in [10]. The Command Message pattern
is used to invoke a procedure in another system. The Document Message
pattern is used to transfer data between systems. The Event Message
pattern is used to asynchronously notify systems of events.

This section identifies the patterns found in the six message families of
JMF.

3.2.1 JMF Query
A JMF Query message requests information about the state of a system.
The caller may specify a Return Address [10] allowing the callee to
process the Query request asynchronously. The caller may also specify a
subscription for the Query requiring the callee to send a Signal message
on a certain time interval or when a specific state is reached.

A JMF Query message is the Command Message [10] pattern.

3.2.2 JMF Command
A JMF Command message requests a change in a system’s state. The
caller may specify a Return Address [10] allowing the callee to process the
Command request asynchronously.

A JMF Command message is the Command Message [10] pattern.

3.2.3 JMF Response
A JMF Response message is a mandatory synchronous reply to a Query or
Command request notifying the caller that the request has been received.
A Response may or may not contain the results of the processed Query or
Command request.

2006 TAGA Proceedings 61

A JMF Response message is the Document Message [10] pattern.

3.2.4 JMF Acknowledge
A JMF Acknowledge message is an optional asynchronous reply to a
Query or Command request. If the caller of the request specified a Return
Address [10] the callee may choose to process the request asynchronously
and send one to three Acknowledge messages notifying the caller of the
completed stages of message processing (Received, Applied, and
Completed). The final Acknowledge message sent by the callee must
contain the results of the processed Query or Command.

A JMF Acknowledge message is a combination of the Document Message
and Event Message patterns [10].

3.2.5 JMF Signal
A JMF Signal message is an asynchronous reply to a Query message sent
on a certain time interval or when a specific state is reached. Signal
messages are sent to the Return Address [10] specified in the Query
request that initiated the subscription.

A JMF Signal message is the Event Message [10] pattern.

3.2.6 JMF Registration
A JMF Registration message requests that the callee send JMF Command
messages to a third party on a certain time interval or when a specific
state in the callee system is reached.

A JMF Registration message is the Command Message [10] pattern.

3.3 JMF Message Interactions
The interactions of JDF-enabled systems using the six message families
of JMF map to five of the interaction patterns defined in [3].

A system sends a Query or Command message to a system and receives a
Response message as a reply. This corresponds to the Send/receive [3] and
Remote Procedure Invocation [10] patterns, illustrated in Figure 2.

Figure 2 Send/Receive pattern in JMF

2006 TAGA Proceedings 62

The extension of the above interaction that includes asynchronous
Acknowledge messages is a variant of the Multi-responses [3] pattern,
Figure 3.

Figure 3 Multi-responses pattern with Acknowledge

Another JMF interaction that fits the Multi-responses [3] pattern definition
is a Query message specifying a subscription; see Figure 4.

Figure 4 Multi-responses with Signal

2006 TAGA Proceedings 63

The sending of a Signal or Acknowledge message corresponds to the
Send/Receive [3] pattern. The reception of a Signal or Acknowledge
corresponds to the Receive/Send [3] pattern. To be more specific, the Send
part of this incarnation of the Receive/Send pattern only requires that the
receiver send a JMF message if it encounters a message-processing fault.
If the receiver processes the JMF message successfully, it is not required
to send a JMF message as a reply. However, in the case of HTTP-based
JMF messaging a HTTP response with HTTP status code 200 (the request
has succeeded) must be sent.

The sending of a Registration and the resulting interactions map to the
Request with referral [3] pattern, see Figure 5. Any JMF message that uses
a Return Address [10] can be considered to map to the Request with referral
pattern. For example, the return address of a Query subscription could
refer to a third party instead of the sender of the Query containing the
subscription.

Figure 5 Request with referral in JMF

2006 TAGA Proceedings 64

4 Conclusions and Discussion
File-based JMF messaging and HTTP-based JMF messaging both have
weaknesses. The space and time decoupling of systems provided by file-
based JMF messaging is a favorable property it shares with message-
oriented middleware solutions [1, 10]. However, while message-oriented
middleware systems are designed specifically for messaging, file-based
JMF messaging uses conventional file systems not designed with the
intention of serving as a messaging infrastructure.

HTTP-based JMF messaging lacks both space and time decoupling: the
sender connects directly to the receiver, requiring that both systems be
active during the interaction. Nonetheless, the simplicity of HTTP’s
request-reply point-to-point communication is what has made it into the
ubiquitous protocol it is and the protocol used by both Web Services [10]
standards and JMF to integrate distributed systems.

In practice, HTTP-based JMF messaging is the communication model
that JDF-enabled systems implement. The JDF specification [4] implicitly
favors HTTP and the ICSs [6] explicitly require that systems implement
JMF messaging over HTTP in order to be conformant.

Although HTTP-based JMF messaging enforces a tight coupling between
the message endpoints of interacting systems, there is nothing
preventing a system from internally implementing a loose coupling to its
endpoint. By adding an intermediate layer between a system and its
message endpoint the system can be decoupled from the messaging
technology, see Figure 6.

SystemSystem

In
term

ed
iate

L
ayer

In
term

ed
iate

L
ayer

HTTP
Client

HTTP
Server

Message
Endpoint

HTTP

Figure 6 Decoupling of system and message endpoint

When sending a message a system would call the intermediate layer. The
call would return immediately and it would be left to the intermediate
layer to take responsibility for the delivery of the message to the receiver.
Likewise, when receiving a message a system’s message endpoint would
call the intermediate layer, which would determine further processing of

2006 TAGA Proceedings 65

the message. The intermediate layer could be designed to provide full
decoupling between the system and its message endpoint, see Table 2.

Table 2 Decoupling properties

 Time
decoupling

Space
decoupling

Synchronization
decoupling

Intermediate Layer Yes Yes Non-blocking send
Non-blocking receive

File-based JMF Yes Yes Blocking send
Blocking receive

HTTP-based JMF No No Blocking send
Non-blocking receive

An intermediate layer could also support the notion of reliable delivery of
JMF messages, a topic covered by neither the JDF specification nor the
ICSs. Reliable delivery is concerned with guaranteeing the delivery of
messages, in the order they were sent, and without duplicates. The JDF
specification defines the necessary constructs to support guaranteed
delivery and delivery without duplicates. The Multi-responses [3] pattern
with Acknowledge messages (Figure 3) can be used to implement
guaranteed delivery of messages, and a receiver can eliminate message
duplicates by keeping a log of the IDs of received messages. However,
additional constructs need to be added to the JDF specification to
support ordered delivery of messages.

2006 TAGA Proceedings 66

5 Acknowledgments
The author wishes to thank professor Björn Kruse, Linköping University,
and the members of the CIP4 organization for their feedback and
support.

6 References
1. L. Aldred, W. M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. On

the Notion of Coupling in Communication Middleware, Lecture Notes in
Computer Science, Volume 3761, pp. 1015 – 1033. Springer-Verlag Berlin
Heidelberg, 2005.

2. C. Alexander, S. Ishikawa, M Silverstein. A Pattern Language - Towns
Buildings Construction. Oxford University Press, 1977.

3. A. Barros, M. Dumas, A.H.M. ter Hofstede. Service Interaction Patterns:
Towards a Reference Framework for Service-based Business Process
Interconnection. Technical Report FIT-TR-2005-02, Faculty of Information
Technology, Queensland University of Technology, Brisbane, Australia,
March 2005.
http://sky.fit.qut.edu.au/~dumas/ServiceInteractionPatterns.pdf, accessed
March 2006.

4. CIP4. JDF Specification Release 1.3, 2005.
http://www.cip4.org/documents/jdf_specifications/JDF1.3.pdf, accessed
March 2006.

5. CIP4. Base Interoperability Conformance Specification (Base ICS) 1.0 rev A, 2005,
http://www.cip4.org/document_archive/documents/ICS-Base-
1.0RevA.pdf, accessed March 2006.

6. CIP4. Interoperability Conformance Specification (ICS) Registry.
http://www.cip4.org/document_archive/ics.php, accessed March 2006.

7. CIP4. The International Cooperation for the Integration of Processes in
Prepress, Press and Postpress Organization (CIP4) home page.
http://www.cip4.org, accessed March 2006.

8. P.Th. Eugster, P.A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many
Faces of Publish/Subscribe. ACM Computing Surveys, 35(2), pp. 114/131. June
2003.

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

10. G. Hophe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley,
2004.

11. Simple Object Access Protocol (SOAP) Version 1.2, 2003.
http://www.w3.org/TR/soap12-part1/, accessed March 2006.

2006 TAGA Proceedings 67

Appendix A
Pattern Name Pattern Occurrence in JMF

Canonical Data
Model

Job Messaging Format (JMF)
Job Definition Format (JDF)

Command Message
JMF Command

JMF Query

Document Message
JMF Response

JMF Acknowledge

Event Message JMF Signal

Format Indicator

JMF/@Version
JMF/@ICSVersions

JMF/@xmlns
JMF/*/@xsi:type

 HTTP header Content-type

Correlation Identifier
JMF/*/@ID

JMF/*/@refID

Return Address

JMF/Query/@AcknowledgeURL
JMF/Command/@AcknowledgeURL

JMF/Query/Subscription/@URL
JMF/Registration/Subscription/@URL

JMF/Command[@Type=’SubmitQueueEntry’]
/QueueSubmissionParams /@ReturnJMF

JMF/Command[@Type=’SubmitQueueEntry’]
/QueueSubmissionParams /@ReturnURL

JDF/NodeInfo/@TargetRoute

Claim Check

JMF/Command[@Type=’SubmitQueueEntry’]
/QueueSubmissionParams /@URL

JMF/Command[@Type=’ReturnQueueEntry’]
/ReturnQueueEntryParams /@URL

JMF/Command[@Type=’ResubmitQueueEntry’]
/ResubmissionParams/@URL

2006 TAGA Proceedings 68

