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Abstract 

 
We propose here an alternative solution for font scaling, consisting of automatic 
glyph conversion from raster to outline type, successive enlargement of outline-
type glyph, and eventually, rasterization of enlarged outlined type. This paper 
shows an approach for converting bitmap images of text glyphs into a vector 
format. The following work is concentrated on the first part of the algorithm 
(glyph vectorization). We formulate the above problem by variational means, 
where the input is the contour of the given glyph, consisting of the straight lines, 
and the output is the family of the third-order Bezier curves, outlining the given 
glyph and preserving its contour form. 
 

Introduction 
 
The quality and speed of the printing industry is constantly improving. One 
major direction of these quality enhancements is increasing printing resolution. 
However, bi-level resources, such as raster fonts and logos encountered in 
legacy applications, may scale poorly to higher resolutions. It is difficult to scale 
these resources correctly without resulting in various visual artifacts such as 
jaggies or other distortions. 
 
There exist various font enlargement methods, such as standard upscaling 
methods (e.g., bilinear and bi-cubic interpolation) or more complicated heuristic 
methods (Anderson (1986), (1987), (1989)). Because of the bi-level form of a 
given bitmap font, these methods do not preserve the form of the glyph. This 
problem exists also in the case where the scaling is an integer multiple. 
 
We have checked the performance of one of these algorithms (Anderson 
(1989)), dealing with the 3 times enlargement of binary images stored in the run 
end form. The basic idea was to rotate the image by 90 degrees, to enlarge it 
vertically, to rotate back and to enlarge vertically again. The vertical 
enlargement included the interpolation of the two new lines between every two 
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horizontal lines, where the challenge  is determining when run ends correspond 
and detecting a variety of special cases which may require special handling. The 
above variety of cases included not only the relative run ends position of the 
given two lines, but also the run ends position of two additional lines adjacent to 
the two given lines from above and from below. 
 
To explore the performance of the above algorithm, the Times New Roman size 
24 text was enlarged three times and then compared to the same Times New 
Roman text of size 72 (see Error! Reference source not found.). 
 

 

 

 
Figure 1 

Size 24 text on the top, the same text 3 times enlarged in the middle and 72 size text at 
the bottom. 

 
One may see that there are some abnormalities in the above enlargement 
process, for example, the "steps" on the vertical part of the first letter "I", and 
not exact glyph form conservation in case of letters "f" and "r", especially in 
their upper parts. One of the reasons in the above algorithm failures is the fact 
that the described interpolation should be performed in both dimensions (vertical 
and horizontal) simultaneously, because this action is not separable. Another 
reason for algorithm failure is an optional change in original lines that are used 
for interpolation. Due to above abnormalities we conclude  that there is a need in 
algorithm improvement. 
 
Especially for glyphs it is desirable to obtain the same visual quality for 
different sizes and resolutions. When using bitmap fonts, the shape must be 
defined for each applicable size individually to guarantee optimal results. 
Moreover, bitmap images are consuming much more resources for storage and 



transmission. The glyph conversion to vector-based format seems to be the 
better choice for this kind of use cases. 
 
This paper describes an alternative approach for upscaling raster font images for 
the non-integer and integer scaling cases. We propose a scaling algorithm that 
consists of the following three sections: 
 

1. Glyph conversion from raster to outline (vectorization) 
2. Enlargement of outline-type glyph 
3. Enlarged glyph conversion from outline to raster (rasterization) 

 
This idea was explored previously in Pletschacher (2006). The main drawback 
of their method was polygonal approximation of glyph contour. As a result, 
being scaled 4 times, the glyph contours looked polygonal and not "curved" 
enough. The need to use curves instead of straight lines became evident. 
 
The main challenge, and the goal of this work, is to realize the first part of the 
suggested algorithm. Roughly speaking, we explore an algorithm that accepts 
the connected component (binary image) as input and produces its vector form, 
i.e., providing the number of curves outlining the given image. In this work, we 
use third-order Bezier curves for outlining the contour of a given glyph. 
 
In the mathematical field of numerical analysis, a Bezier curve is a parametric 
curve important in computer graphics. Bezier curves were widely publicized in 
1962 by the French engineer Pierre Bezier, who used them to design automobile 
bodies. The curves were first developed in 1959 by Paul de Casteljau using de 
Casteljau's algorithm, a numerically stable method to evaluate Bezier curves. In 
case of third-order (cubic) Bezier curve we have four points , , ,0 1 2 3P P P P  in the 

plane or in three-dimensional space defining it. The curve starts at 0P  going 

toward 1P  and arrives at 3P  coming from the direction of 2P . Usually, it will 

not pass through 1P  or 2P ; these points are only there to provide directional 

information. The distance between 0P  and 1P  determines "how long" the curve 

moves into direction 2P  before turning towards 3P . The parametric equation 

form of the curve is: 
3 2 2 3

0 1 2 3( ) (1 ) 3 (1 ) 3 (1 ) , 0 1C t P t P t t P t t P t t= ! " + ! " + ! " + ! # # ,            (1) 

see, for example, Figure 2. 
 
Polynomial representation of a glyph outline, such as Bezier curves, is often 
used by font developers. Various examples include the TrueType fonts 
developed by Apple (see, for example, "d" glyph on Figure 3) or the Type 1 and 
Type 3 fonts developed by Adobe. We propose using this type of representation 
as an intermediate description to upscale existing bitmap fonts. As mentioned 
above, the main disadvantage of existing scaling algorithms is their distortion of 



the glyph being enlarged. We claim that outlining the binary image with a 
number of curves and its subsequent scaling preserve the glyph form during this 
enlargement process. 
 

 
 

Figure 2 
3rd order Bezier curve. 

 
The question is, how can we find this family of curves outlining the given glyph, 
given the contour of the above glyph? Let consider our objectives for these 
curves. At first, they should be close to the given contour in some sense. 
Secondly, they should be of Bezier form and there should be a sufficient 
smoothness at the connection points. In addition, their length and their curvature 
should be restricted in some sense also. In order to incorporate these objectives, 
we use in this work the variational methods to formulate the above problem. 
 
Let us consider, as a classical example of variational formulation, the Mumford-
Shah variational model Mumford (1989) that has become a general framework 
in case of image segmentation. It defines the segmentation problem as a joint 
smoothing/edge detection problem as follows: given an image g , it seeks 
simultaneously a set K  of discontinuities, the "edges" of g , decomposing the 
planar domain B  ("pixel space") to disjoint connected open subsets 
, 1, ,B i ni = K , so that 1 nB KB B= UKU U , and a function u  differentiable on 

iBB = U , which is allowed to be discontinuous across K . Then, the "best" 

segmentation of a given image is obtained by minimizing the functional 
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B B K

u g dxdy u dxdy KF u K !" # + $ += % % ,                       (2) 

where K  stands for the total length of the arcs making up K  and ,! "  are two 

weight parameters. The smaller F  is, the better ( , )u K  segments g . The first 
term accounts for how good is the approximation of g  by u . It is referred to as 
fidelity term. The second, smoothness term, makes sure that u  - and hence g  - 



does not vary much on each iB . The third term is a penalty on the total length of 

the discontinuities. 
 

 
 

Figure 3 
A TrueType "d" glyph "d". 

 
Roughly speaking, we may summarize the variational formulation of a problem 
in the following informal way: given the data g , we want  to find the output u  
being close to g  in some sense. In addition it should satisfy some prior 
knowledge that we have about it. It is obvious, that the first part  relating to the 
closeness to g , is being formulated in the fidelity term, and the prior knowledge 



about the desired output u  should be formulated in smoothness, or penalty term. 
Thus, for our problem we may generalize the Mumford-Shah functional (2) in 
the following way: 

Pr ( ) ( , )( ) ior C Dist C gF C !+ "= ,                         (3) 
where 1, , )( NCC C= K  is the family of desired third-order Bezier curves, 

Pr ( )ior C  is the penalty, or prior term and ( , )Dist C g  is the fidelity, or distance 
term of the functional (3). 
 
Our main innovation, however, lies in an appropriate formulation of prior and 
distance terms of the functional (3) and finding the outlining curves C  given the 
glyph contour g , in an accurate and visually pleasing manner. 
 

Variational formulation 
 
Let ( )g s  denote the contour of a given glyph, such as the glyph "c" in 24-size 
Times New Roman font shown in Figure 4. 
 

  
Figure 4 

The glyph "c" and its contour. 
 
We would like to find N Bezier curves  

3 2 2 3
0 1 2 3( ) (1 ) 3 (1 ) 3 (1 ) , 0 1, 1, ,i i i i

iC t t P t t P t t P t P t i N= ! + ! + ! + " " = K    (4) 

outlining the given contour. Thus, we are going to formulate formally the prior 
and distance term of the functional (3). 
 
Actually, we have no special requirements for desired third-order Bezier curves. 
Our objectives are very common: we would like to restrict the length of these 
curves and their optional curvature (see, for example, Kass (1988)). In addition, 
we expect the continuity of the first and second order, smoothness of the zero 



and first order, for the global curve in locations of curves' connections. Our prior 
term looks, hence, as follows:  

( ) ( )
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The first term of the functional addresses curve length where the bigger !  is the 
shorter the desired curve is. The second term deals with curve curvature, where 
the bigger !  leads to a straighter resulting curve. The third and the fourth terms 
address the continuity of first and second order, respectively. 
 
The definition of distance term is a little bit more difficult. We cannot use here 

the L!  norm or 2
L  norm, as in case of Mumford-Shah functional (2): we deal 

here with one-dimensional manifolds in plane and not with functions of one 
variable which are by definition one-to-one correspondences. Our definition of 
distance between two curves is quite intuitive and logically motivated, as 
illustrated in Figure 5. Let us start from the distance from point C  to the curve 
( )g s , where s S!  ( S  is parameter domain). The intuitive definition of such 

distance should be the length from the point C  to the closest point on the curve 
g  and its formal definition is  

( , ) inf ( )
s S

Dist C g C g s
!

= " .     (6) 

Assume now that we have a variety of such points in the form of the curve ( )C t . 
How should we define the distance now? Considering that we would like to 
minimize the desired distance, the intuitive and logically motivated definition 
between two curves ( )C t  and ( )g s  should be 

( , ) sup inf ( ) ( )
s St T

Dist C g C t g s
!!

= " .    (7) 

It should be noticed, that the above function is not commutative: in general, 
( , ) ( , )Dist C g Dist g C!  (see Figure 5). That is, minimizing the above distance we 

don't guarantee the closeness of two curves. Thus, the desired distance should 
include also its symmetric part, resulting in the final formula (8). 

2 2
1 2( , ) inf ( ) ( ) inf ( ) ( )

s S t T
t T s S

Dist C g C t g s C t g s! !
" "

" "

= # + #$ $ .   (8) 

Both distances have been squared to simplify the following minimization. For 
the same reason we have changed the supremum function to a trivial sum of the 
distances. Assigning different values of 1!  and 2! , we can combine the two 

metrics in the global one, which will be satisfy to our needs. 
 



 
Figure 5 

The distance between two curves in the plane 
 
Our functional model is defined, thus, in the following way: 
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We assume that finding the functional minimum will bring us to the desired 
solution. 
 

Minimum finding algorithm 
 
We now turn to the desired form (4) of the curve ( )C t . Roughly speaking, the 
functional variable is not the general curve C , but 3N  points 
, , , , , ,1 2 3 3 2 3 1 3N N NP P P P P P! !K , which are the Bezier curves’ control points.  Thus, 

our problem is being transformed from the variational one to the problem of 
minimizing the function of 6N  variables – where every point iP  is actually the 

pair ( ),i ix y . 

 
Due to the form of the functional (9) we can assume that it is convex, locally at 
least, thus there exists a minimum point. Is the minimum point we are going to 



find the local minimum point or the global one? We can't answer this question, 
but we may claim that we do not need to be concerned about it. We only need to 
find the minimum point that is close to the given data, the glyph contour, 
whether it is local or global one. 
 
Eventually, in order to find the minimum point we must solve the nonlinear 
equation 

( ), , , , , ,1 2 3 3 2 3 1 3( ) 0, N N NF P P P P P P P P! !" = = K .   (10) 

There are some existing numerical methods for solving these types of nonlinear 
equations. Due to the robustness and simplicity of implementation we will use 
the fixed point scheme described in Vogel (1996) to solve (10). Substituting (4) 
in (9), we obtain observe that the first four parts in the right-hand side of (9)  
have the quadratic form concerning all iP , which implies 6N  linear equations 

with 6N  variables in case of (10). A reminaing problem are the two last, metric, 

terms. In case of 2
inf ( ) ( )
t T
C t g s

!
"  for every s  we define the derivation by iP  as 

( )
02 ( ) ( )

i

C t

P
C t g s

!

!
" , where 0( )C t  is the closest point to ( )g s , calculated 

"manually" from the previous iteration. The second case is much more 
complicated, because it is not so simple to find the closest point 0( )g s  on the 

contour g  from the point ( )C t . Here we use the relaxation technique developed 
in Kluzner (2007): we assume that the expression 

2
( ) ( )

ln exp

C t g s

s S

!
!

" "

#

$ %
& '"
& '& '
( )

*      (11) 

approximates 2
inf ( ) ( )
s S
C t g s

!
"  when 0! " . The derivation of this term is 

defined in manner identical to the previous case. 
 
Thus, at every stage we obtain from (10) the linear system of 6N  equations with 
6N  variables, which are ( ),x y  coordinates of 3N  Bezier curves' control points. 

We do not deal here with proving the existence of minimum of the functional (9) 
and, as a conclusion, the existence of unique solution of linear system described 
above, but the form of the functional implies it. This was proved further by 
numerical examples. 
 
Due to the method employed, of developing the derivation of two metric terms, 
our solution has to be iterative. As we mentioned before, we tend to find the 
minimum point close to the initial data - in this case the given glyph contour. A 
problem occurs because the initial contour consists of vertical and horizontal 
lines. To describe it in terms of Bezier curves we first calculate a coarse 
approximation of the given contour in terms of Bezier curves. We perform this 
operation using a "curve growing" method: starting at arbitrary point on the 



given contour, we find the Bezier curve approximating the maximal part of this 
contour and also sufficiently close to it. This is shown, using, up to a 0.2  pixel 
difference, in Figure 6. 
 

 
Figure 6 

Initial approximation of the glyph "c" contour. 
 
Now with the initial solution found, we start the iteration process. Empirically 
we found that the amount of 30  iterations is sufficient. The accepted family of 
Bezier curves outlines the original contour very similar to expected one as 
shown in Figure 7 on the left side. 
 
At this stage we have to deal with two additional problems: the optimal number 
of Bezier curves and the location of Bezier curves' end points. These two issues 
are strongly connected. Analyzing the curvature graph on the domain of the 
global Bezier curve, shown on Figure 7 on the right side, we find the local 
maximum points where the curvature is locally maximal and place the new 
Bezier curves' end points at these locations. This technique is used by various 
font developers: the Bezier curves outlining the future glyph start and end at 
points with high curvature. Now the number of Bezier curves outlining the given 
contour is not arbitrary, but defined in some logical way. Secondly, placing the 
end points in places with high curvature allows in the future optional sharp 



points on the global outlining curve. This can be observed at the lower end of 
the glyph "c" on the Figure 8. 

 
Figure 7 

The intermediate approximation of the glyph "c" contour (on the left) and accepted global 
Bezier curve (on the right). 

 

 



Figure 8 
End points re-arrangement on the Bezier curve outlining the glyph "c" contour. 

 
At this stage we continue the iterations, with the initial global curve after the end 
points' re-arrangement process. We slightly modify the prior term in our 
functional: at the new end points with extremely high curvature we omit the zero 
and first order smoothness. At the remaining end points we replace the zero 

order smoothness demand ' '
1(1) (0)i iC C +=  by curve velocity collinearity demand 

' '
1(1) (0)i iC k C += ! . The previous penalty was used for stabilizing the global curve 

form; now, when the form of the glyph has been sufficiently outlined the 
collinearity request is sufficient. The final glyph "c" contour outlining curve and 
its superposition on the initial glyph are presented on the Figure 9 and on the  
Figure 10 respectively. 
 

 
Figure 9 



The final glyph "c" contour outlining curve. 
 

 
 

Figure 10 
The outlining curve on the initial glyph. 

 
Additional examples and conclusions 

 
As may be seen on the example of glyph "c", the results in smooth glyphs like 
"a", "o", "e", "d" etc. are ideal: the algorithm deals perfectly with smooth parts 
which have the form of circle and ellipse. The sharp parts in these glyphs are 
also outlined correctly. The main drawback of this algorithm is glyphs with 
serifs. 
 
We present here the outlining solution for two additional glyphs "x" and "y" of 
the same type Times New Roman size 24. These two glyphs were chosen due to 
their "uncomfortable" form, which is expressed in serifs in their upper parts and 
in the lower part of glyph "x" (see Figure 11). In addition, the outlined glyph 
from Kanji font of size 64 is presented in the Figure 12. As may be seen, the 
results are quite good, except the lack of sharp corners in places, like the internal 



part of outlining curve of the lower part of glyph "x", or interior outlining of 
Kanji font which should be square with sharp corners. The problem that causes 
this is a non-ideal algorithm for choosing the end points on the outlining contour 
that should not be smooth. This is the main remaining issue that should be the 
part of further research. 
 

 
 

 
 



Figure 11 
Outlined "x" and "y" glyphs. 

 

 
 

Figure 12 
Outlined Kanji glyph. 

 
Acknowledgements 

 
The authors would like to thank Guy Rosman from IBM Haifa Research Lab for 
valuable discussions during this work. 
 

Literature Cited 
 
Anderson, K.L., Mintzer, F.C., and Goertzel, G. 

1986 U.S. Patent 4,631,751 (December 23, 1986). 
Anderson, K.L., Mintzer, F.C., Goertzel, G., Mitchell, J.L., Pennington, K.S. and 

Pennebaker, W.B. 1987 "Binary-image-manipulation algorithms in the image 
view facility", IBM J. Res. Develop., vol. 31, no. 1, pp. 17-31. 



Anderson, K.L., Pennebaker, W.B., and Pennington, K.S. 
1989 U.S. Patent 4,885,786 (December 5, 1989). 

Kass, M., Witkin, A. and Terzopoulos, D. 1988 "Snakes: Active contour models", 
Internat. Journal of Comp. Vision, vol. 1, pp. 321-331. 

Kluzner, V., Wolansky, G., and Zeevi, Y. Y. 2007 "A geometric-functional-based image 
segmentation and inpainting", in Proceedings of First International Conference 
on Scale Space and Variational Methods in Computer Vision, Ischia, Italy, 
May/June 2007. 

Mumford, D. and Shah, J. 1989 "Optimal approximations by piecewise smooth functions 
and associated variational problems", Comm. Pure Appl. Math., vol. 42, pp. 
577-685. 

Pletschacher, S. Eckert, M. and Hübler, A.C. 2006 "Vectorization of glyphs and their 
representation in SVG for XML-based processing", Proceedings ELPUB2006 
Conference on Electronic Publishing, Bansko, Bulgaria, June 2006. 

Vogel, C. and Oman, M. 1996 "Iterative methods for total variation denoising", SIAM J. 
Sci. Statist. Comput., vol. 17, no. 1, pp. 227-238. 


