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Abstract

In this paper, a new approach to visualize and calculate the unavoidable error in the

duplicated patches of the SNAP IT8.7/4r characterization datasets from eighty

newspaper print sites is presented. This unavoidable error is due to the spectral

difference between duplicated patches in the characterization datasets. The error is

linearly transformed and reported as an eigenvector/eigenvalue approximating the

total error. The analysis shows that the spectral error of the duplicated patches is

not similar and a systematic error bias pattern is observed. The spectral error

estimation procedure includes data manipulation, bootstrapping, and principal

component analysis using the R-programming language. The R-script is included

as well as a script to create artificial data as an effort to stimulate further research.

Introduction

The unavoidable error:

When an operation or experiment is repeated under what are, as nearly as possible,

the same conditions, the observed results are never quite identical. The fluctuation

that occurs from one repetition to another is referred to by a number of terms:

noise, experimental variation, experimental error, or merely error. Noise obscures

our vision, obfuscates the dynamics, and contaminates our data. This is a challenge

experimenters face daily. In a statistical context, the word error is used in a technical

and emotionally neutral sense. It refers to variation that is often unavoidable. We

have to deal with this pesky, real-world problem of noise. Many sources contribute

to experimental error such as errors of sampling, measurement, analysis, and

production equipment in a less-than-ideal environment.
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Many metrics have been used to evaluate the unavoidable spectral error such as the

root mean square error (RMS), the weighted RMS, and the goodness of fit coefficient

(GFC). Our approach, the standard error, uses statistical techniques and bootstrapping

to provide the uncertainty in the data.

Advantages and disadvantages of physiological and physical error:

It has been customary to report the unavoidable error in the physiological tristimulus

color space rather than to identify physical errors in the spectral data. Separate

error term per wavelength or as a linear combination of the reflectance data, are not

common, difficult to interpret, requires multivariate mathematical knowledge and

does not possess a physical meaning.

However, spectral data has distinct advantages over tristimulus color spaces.

Separate error terms can be a useful tool for color management and benchmarking

profiles. Spectral match is independent of observers and illuminants. Also, spectral

data is the only true physical descriptor of the colored object prior to its transformation

to color stimulus function. Once light projected on the retina has been absorbed by

the eye’s three groups of cones, any knowledge of its spectral composition is lost.

What remains are three levels of activity in the red, green, and blue cones.

What is so important about the unavoidable error?

An error term is valuable for calculating the confidence in the calculated averages

of the characterization datasets. It is also a useful tool in production when

determining what action is needed to achieve a color match.

Experimental Design

For the purpose of this research, the Specifications for Newsprint Advertising

Production (SNAP) organization provided eighty characterization datasets from

newspaper sites which met the SNAP recommendations. These datasets were

measured with X-rite’s SpectroLino spectrophotometer. The SNAP committee

estimates the SNAP profile based on averages of thirty-six different wavelengths.

The standard IT8.7/4r test targets contain 1,617 patches, amongwhich are twenty-nine

duplicated patches. We extracted the spectral responses of these duplicated patches

from the IT8.7/4r characterization datasets. These twenty-nine different duplicated

patches are used as an estimator of a typical unavoidable experimental error, which

can be generalized to all patches.

The retrospective data received from the SNAP organization does not follow a

randomized paired design since the duplicated patches were not randomized for

every site. The decision as to the placement of the first and the second duplicated
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patch members on the IT8.7/4r was NOT determined randomly. However, the

duplicated patches were run in pairs. Each newspaper simultaneously printed all

the twenty-nine patch pairs. Each duplicate pair was printed at the same time by

the same press crew, on the same press-couple and used the same press chemicals.

One can safely assume that every site can be regarded as an independent sample.

Subtracting a given patch from its duplicate:

In this research, retrospective data were analyzed. Theoretically identical patches

should produce identical spectral responses. In the absence of a bias, subtracting

the spectral reflectance of a given patch from its duplicate renders its average to be

almost zero, and its parent distribution to have a mean of zero. However, due to the

lack of randomization, one might expect to observe a patch-location bias.

The duplicated pairs were differenced to obtain the spectral error. The differencing

process of this retrospective paired design has the potential of removing site-to-site

variation and provides clues about the noise. To evaluate the noise, the spectral

responses for each patch were subtracted from the duplicate for cyan, magenta, yellow

and black percentage coverage. In this study, we have eighty IT8.7/4r sets (one per

print site), and every set contains twenty nine duplicate patches. Each duplicate

patch has an associated thirty-six spectral responses. This provides 1,044 datasets;

each dataset contains eighty cases.

The search for mu ( μ ):

One may suppose that this SNAP data is merely a sample from some large

hypothetical, sought after dataset. This hypothetical dataset represents the population

of all possible newspapers having an unknown multivariate population parameter

μ. After observing the sample values, the sample mean x is calculated. This leads
to a question of its accuracy as an estimate of the true population mean. If the

parameter μ can be accurately calculated, it would be possible to create the optimum

color profile.

The importance of x is that it is the estimator for the unknown parameter μ. Under
repeated sampling, one can quantify the uncertainty in x, to estimates μ, with the

standard error. In turn, the standard error allows the calculation of the confidence

interval which brackets the true population parameter if the same population is

repeatedly sampled.

The validity of an accurate confidence interval depends on three basic assumptions:
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1. x is unbiased or nearly unbiased for μ.

2. The standard error is a good estimate of the standard deviation of the sampling

distribution of x.

3. The sampling distribution of x is approximately normal.

Bootstrapping to calculate the unavoidable error:

This analysis operated on the reasonable assumption that every site can be regarded

as an independent random sample. The SNAP characterization datasets constitutes

a relatively large sample size from eighty newspapers satisfying the SNAP

recommendation. Randomness eliminates bias, validating the first assumption.

However, the differenced observations should not be assumed to have a mean of

zero due to the lack of randomization for each site within the IT8.7/4r.

To fulfill the above second and the third assumptions, one may resort to an important

mathematical procedure called bootstrapping. This procedure does not assume any

knowledge of the form of the underlying parent distribution from which the sample

arose. Traditional classical statistical parameter estimates are based on the normality

assumption. Bootstrap deals with non-normality and is more accurate in practice

than the classical methods.

Bootstrapping substitutes computers’ raw computing power for rigorous theoretical

analysis. It is a proxy/estimate for the sampling distribution of the characterization

dataset error term. Generically, bootstrapping includes: re-sampling the dataset a

specified number of times, calculating the mean from each sample, and finding the

standard error of the mean. In this paper, the SNAP characterization datasets’

duplicated differenced patches were re-sampling 1,000 times.

Results and Discussion

Bootstrapping was carried out for every wavelength independently to preserve the

relationship between wavelengths. An example histogram is given below of what

bootstrapping accomplishes rather than attempting to present all twenty-nine duplicate

patches for all thirty-six frequencies.

The data were transformed into a normal distribution as can be seen from Shapiro-Wilk

normality test. The p-value before bootstrapping is 0.000037 which is highly

significant indicating that the data far from normality. After bootstrapping the

p-value is 0.8296 assuring normality. This is valuable for estimating an accurate

standard error.
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Principal component analysis (PCA) Introduction:

It is a way of identifying and extracting patterns in correlated data. PCA is a powerful

tool for analyzing and displaying patterns in high dimensional data where graphical

representation is not an option. It is also valuable in reducing the number of data

dimension without much loss of information.

PCA computes new uncorrelated variables called principal components (PCs) from

correlated variables. The uncorrelated variables are obtained as linear combinations

of the original variables. The first principal component will have the largest possible

variance. The second component is computed under the constraint of being orthogonal

to the first component, having the second largest variance. The other components

are computed likewise, with systematically decreasing variances. Once the these

PCs are made, one rotates the coordinates of all of the data points, called cases, relative

to these perpendicular uncorrelated variables and then re-plot the data. By

performing such a rotation, the new axes might have particular explanations. In this

paper the latent PC1 axis indicates lightness, samples on the left have lower lightness

and samples on the right have higher lightness. PC2 may explain the hues.

PC loadings, the eigenvectors, measure the importance of each variable (wavelength)

in accounting for the variability in the PC. High correlation indicates that variables

are associated with the maximum amount of variation in the dataset. Uncorrelated

variables do not show a distinct pattern and do not contribute to the variation in the

dataset and can be safely removed to simplify the data analyses.
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PC scores, the eigenvalues, can be interpreted geometrically as the projections of

the observations onto the principal components. The scores are the result of the

matrix multiplication between the eigenvectors and the centered data matrix.

A SCREE plot is a plot of each component’s variance against the corresponding

PCs. It shows the eigenvalues decline as a function of the PCs. In correlated data,

the first few PC’s decline rate is fast, and then it levels off significantly signaling

the maximum number of useful PCs to be extracted.

Principal component analysis (PCA) results

The R statistical programming language calculates the principal components

analysis with two different commands: princomp, using the correlation matrix, and

prcomp, which used the singular value decomposition. In this research, prcomp

was used with the centered data matrix for the duplicated patches, their error terms,

and the difference between their spectra.

PCA can model the spectra of a sample set with satisfactory accuracy. The first

three principal components (PCs) appear to explain almost 99.8% of cumulative

contribution of variance of spectral reflectance. According to the SCREE plot illustrated

in Figure 2, color spectral reconstruction based on three sets of principal components

will provide the best spectral data representation. For the purpose of brevity, we

are only presenting two SCREE plots, one for a duplicate patch called, pcaA, and

the other for the error difference between the duplicate patches, which is called

pcaDiff. Arbitrarily, the duplicated patches were given the names ‘A’ and ‘B’. This

convention will be followed throughout this paper unless otherwise specified.
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Synthesized, random data were also plotted to demonstrate the appearance of a

SCREE plot for random uncorrelated data as illustrated in Figure 3. The graph

below clearly shows that the variance, for the random data, does not level off. PCA

calculation indicates that we need twenty-six principle components to describe

99.8% of the variance.

It is also a good practice to visualize the principal components with a boxplot.

Figure 4 is a boxplot for one set of the duplicated patches and the duplicated patches’

error difference. The graph does not show any alarming outlier. It also shows the

error compared to the actual spectra.
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For comparison, the synthesized, random data are also plotted once again. The

boxplots in Figure 5 shows multiple outliers and slow decay as compared to

correlated data, which decays much faster. Also, it can be shown that differencing

increased the variability.

Biplots are multivariate scatterplots. They represent both the samples and variables

in the same graph. They show the score of each case (rotated patch reflectance) and

the loading of each variable (wavelengths) on the first two principal components.

Figure 6 illustrates PC1 on the x-axis trend together towards the negative side. In

fact, all the eigenvectors are negative for the first principal component. Similarly,

PC2 trends, both positive and negative are observed along the y-axis. The small

angles between the variables, represented by arrows, are highly correlated.
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Again, it is helpful to compare the above graph with a random synthesized data in

Figure 7. One notices that the variables are split apart randomly due to the lack of

correlation with no specific direction.

The eigenvector plot illustrated in Figure 8 appears to simulate the shape of the

patches’ composite spectra. This type of plot is very useful in designing and modifying

test forms for profiling. Smooth curves indicate that the test form does not emphasize

one tone at the cost of the other. Of course, the graph below only represents 29

patches. Other research conducted by the author but not represented in this paper,

indicated that the 1,617 patches of the current IT8.7/4r need to be redesigned to

ensure smooth transition between the various tones.

2013 TAGA Proceedings 71

Figure 7: Biplot of Synthesized RandomData for PC1 and PC2

Figure 8: Eigenvectors plot of a Duplicate Patch Set



The eigenvalues can be thought of as the stretching of the eigenvectors. Figure 9

shows higher eigenvalue difference with magenta and yellow. The red and blue

lines are not superimposed on each other for all patches.

More variability is observed with PC1. This is expected since PC1 accounts for the

largest variance in the data. Comparing Figure 9 which plots PC1 and Figure 10

which plots PC2 show the contrast in variance.

More variability is observed with PC1. This is expected since PC1 accounts for the

largest variance in the data. Comparing Figure 9 which plots PC1 and Figure 10 which

plots PC2 show the contrast in variance.
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Figure 10: Eigenvalues plot of PC2 for Both Duplicate Patches



Next, the spectral error between the duplicated patches needs to be evaluated. The

spectrum of each patch is subtracted from its duplicate patch. Figure 11 shows the

boxplots of the spectral error as a function of wavelength. It is worth mentioning

that subtracting a patch from its duplicate should result in a value of zero in the

absence of bias. As can be seen below, there is a definitive error pattern that is

believed to be a consequence of the lack of randomization of the IT8.7/4r. This

lack of randomization is the reason why it was not possible to calculate an unbiased

estimate for the standard error.

In the future, one would collect new data differently. It would be better to ensure

that every one of the eighty newspaper sites would receive a new randomization of

the IT8.7/4r target. This might provide new insights since each duplicate pair

would be printed at the same time by the same press crew, on the same press-couple

and use the same press chemicals.

Finally we present the standard error for Patch ‘A’ for each cyan, magenta, yellow and

black. As can be seen from Figures 12a though 12d, the standard errors are not similar.

It depends on the patch color and the wavelength.
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Figure 12a: Plot of the Standard Error Per Patch for Duplicate Set A: Cyan Tone Ramp

Figure 12b: Plot of the Standard Error Per Patch for Duplicate Set A: Magenta Tone Ramp

Figure 12c: Plot of the Standard Error Per Patch for Duplicate Set A: YellowTone Ramp



Conclusion

There is a clear bias pattern in the spectral errors; the mean-differences between

identical patches are not zero. It is believed that this is the result of a location bias

on the IT8.7/4r test form. The SNAP test target has been randomized once and

placed on the SNAP website for download by the various newspapers printers.

Multiple downloadable IT8.7/4r test forms should be posted on SNAP website.

Plots of differenced identical patches should have no evidence of any pattern; it

should resemble the stars dispersed in a clear night sky.

Current newspaper profile might be slightly skewed due to the lack of randomization.

The test form was randomized once and printed by eighty different newspaper

sites.

The standard error per wavelength varies as a function of wavelength and as a function

of patch type. Further research is needed to discover the underlying relationship.

Using spectral data allowed the discovery of a process bias through the use of

bootstrapping and principal component analysis.

Recommendation:

It is recommended that any standards organization or trade association follow a

randomized pair design for their testing. Often this design can greatly increase precision

by making comparisons within matched pairs of experimental material.

Randomization can approximately validate the Student’s t test derived on the

assumption of random sampling from normal populations. Many fixed and

unknown disturbances, such as press ghosting, starvation, rollers’ settings …etc,

affects the measured reflectance. It is questionable whether their joint effect could
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be approximately represented unless some appropriate element of chance was

specifically introduced into the experiment.

In order to avoid test form design-bias many randomized versions of the same

color-profiling test form should be printed. This is critical for Standards’ organizations

who attempt to create a representative color profile. Many randomized versions

should be posted for downloads on their websites. We even recommend a frequent

periodical randomization.

The use of bootstrapping is strongly recommended. Bootstrapping is a powerful

tool which is highly underutilized in our industry.
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R-Code and Example Computations

Data manipulations within the R-programming language:

This paper calculates the reflected frequency response error of the duplicated

patches of the characterization datasets. In theory, identical patches produce identical

spectral response. A computer programwas created using the R-Programming language.

The SNAP characterization datasets were placed into a data matrix. The matrix has

129,360 rows with forty-two columns. The rows are the experimental units showing

the spectral reflectance of eighty different newspaper sites. Columns one through
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five and forty two describe the data and are titled: “patchId” “C” “M” “Y” “K” and

“Customer” representing the patch number of the IT8.7/4r, the cyan, magenta, yellow,

black and the newspaper sites respectively.

The R-program below recreates our results using any characterization datasets. The

actual script follows our notes and is in small type. For this script to run correctly,

the file names for the characterization datasets must be characterizationdata1.csv

and characterizationdata2.csv

## Extract, order, and pair identical duplicate patches with their color percentages:

## Select the SNAP characterization datasets that meet the ISO-12647 standard.

## Open each characterization dataset in Excel (use the delimited option). Reformat the

datasets to create a standardized format with forty two columns. The column names are:

## patchId, C, M, Y, K, s380, s390, s400, s410, s420, s430, s440, s450, s460, s470,

s480, s490, 500, s510, s520, s530, s540, s550, s560, s570, s580, s590, s600, s610, s620,

s630, s640, s650, s660, s670, s680, s690, s700, s710, s720, s730, Customer

## In Excel combine all the SNAP characterization datasets into two files

characterizationdata1.csv and characterizationdata2.csv

## In Excel create a file, name iT8.csv. It includes 1,617 rows, one row per patch, and

five columns: patchId, C, M, Y, K. this file is extracted from any given characterization

data set.

#### The following script is run in R-programming language:

#################################

## Create a function to synthesized data and calculate their principal component analysis

#################################

rm(list=ls())

charData <- function(x,y){

data <- lapply(1:29, function(x)

do.call(cbind,do.call(cbind,

lapply(lapply(1:36,function(y)

cbind(rnorm(29,mean=0,sd=1))), data.frame)) ))

pVariatesNames <- paste("s", seq(from=380, to=730, by=10),sep="")

patchId <- paste("s", seq(from=1, length.out=29),sep=" ")

names(data) <- c("Paper", "C10", "C20", "C30", "C40", "C70", "C85", "C100",

"M10", "M20", "M30", "M40", "M70", "M85","M100",

"Y10", "Y20", "Y30", "Y40", "Y70", "Y85","Y100",

"K10", "K20", "K40", "K60", "K80", "K100", "Mix")

for(i in 1:29) {

colnames(data[[i]]) <- pVariatesNames

rownames(data[[i]]) <- names(data)

}

return(data)
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}

## Create the first dataset

dupAMatrixRandom <- charData(1,1)

## Create the second dataset

dupBMatrixRandom <- charData(1,1)

## Create helper function to bootstrap the data and then calculate the mean and standard

deviation

sampleOne <- function(x) x[sample(seq_len(nrow(x)), replace = TRUE), ]

sampleBoot <- function(x, n) replicate(n, sampleOne(x), simplify = FALSE)

applyMean <- function(l) do.call(rbind, lapply(l, apply, 2, mean))

applySd <- function(l) do.call(rbind, lapply(l, apply, 2, sd))

## Bootstrap

samplingMeansCharDataDupARandom <- lapply(lapply(dupAMatrixRandom,

sampleBoot, n = 1000), applyMean)

samplingMeansCharDataDupBRandom <- lapply(lapply(dupBMatrixRandom,

sampleBoot, n = 1000), applyMean)

## Calculate the mean of each itiration of the bootstrapp

bootMeansDupARandom <- applyMean(samplingMeansCharDataDupARandom)

bootMeansDupBRandom <- applyMean(samplingMeansCharDataDupBRandom)

## Calculate the standard error

stdErrDupARandom <- applySd(samplingMeansCharDataDupARandom)

stdErrDupBRandom <- applySd(samplingMeansCharDataDupBRandom)

diffSpectraRandom <- bootMeansDupARandom - bootMeansDupBRandom

## Calculate the principal component analysis for patch A

pcaARandom <- prcomp(bootMeansDupARandom)

## Calculate the principal component analysis for the differenced population

pcaDiffRandom <- prcomp(diffSpectraRandom)

#################################

## Load the iT8.csv into R

iT8 <-read.csv("iT8.csv", header=T)

## Determines and store the first and second duplicated patches, dupA and dupB, in

two separate objects:

dupFirstIndex <- duplicated(iT8[ , c("C","M","Y","K")], fromLast = TRUE)

dupLastIndex <- duplicated(iT8[ , c("C","M","Y","K")], fromLast = FALSE)

dupOrder <- order(iT8[dupFirstIndex, ]$C, iT8[dupFirstIndex, ]$M,

iT8[dupFirstIndex, ]$Y, iT8[dupFirstIndex, ]$K)

dup1 <- iT8[dupFirstIndex, ][dupOrder, ]
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dup2 <- iT8[dupLastIndex, ][dupOrder, ]

## Create patch IDs, (Mix is an abbreviation for: C=100, M=85, Y=85)

idColor <- c("Paper", "K10", "K20", "K40", "K60", "K80", "K100", "Y10", "Y20",

"Y30", "Y40", "Y70", "Y85", "Y100", "M10","M20","M30","M40",

"M70","M85","M100", "C10", "C20", "C30", "C40", "C70", "C85", "C100", "Mix")

## Combine the duplicated patches, their color identification as well as their color

percentages in a new object

Duplicated <- cbind.data.frame(dup1=dup1$patchId, dup2=dup2$patchId, idColor,

C = dup1$C, M = dup2$M, Y = dup1$Y, K = dup2$K)

rm("dup1", "dup2", "dupFirstIndex", "dupLastIndex", "dupOrder","iT8")

## Load the Characterization dataset in R

fileNames <- c("characterizationdata1", "characterizationdata2")

charDataList <- lapply(fileNames, function(x) read.csv(paste(x,"csv", sep='.'),

header=TRUE))

charData <- do.call(rbind, charDataList) ## combines the two lists into ONE

data.frame

## Create two objects to hold the duplicated characterization datasets and order the data

dup1 <- with(charData, charData[patchId %in% Duplicated[,"dup1"],])

dup1 <- with(dup1, dup1[order(Customer, C, M, Y, K, patchId),])

dup2 <- with(charData, charData[patchId %in% Duplicated[,"dup2"],])

dup2 <- with(dup2, dup2[order(Customer, C, M, Y, K, patchId),])

dup1ToBeMatched <- dup1$patchId

dup1ToBeMatchedAgainst <- as.numeric(Duplicated[,"dup1"])

dup1Index <- match(dup1ToBeMatched, dup1ToBeMatchedAgainst)

dup1$patchId <- Duplicated[dup1Index ,"idColor"]

dup2ToBeMatched <- dup2$patchId

dup2ToBeMatchedAgainst <- as.numeric(Duplicated[,"dup2"])

dup2Index <- match(dup2ToBeMatched, dup2ToBeMatchedAgainst)

dup2$patchId <- Duplicated[dup2Index ,"idColor"]

dataOrder <- c("Paper", "C10", "C20", "C30", "C40", "C70", "C85", "C100",

"M10", "M20", "M30", "M40", "M70", "M85","M100",

"Y10", "Y20", "Y30", "Y40", "Y70", "Y85","Y100",

"K10", "K20", "K40", "K60", "K80", "K100", "Mix")

rm("charData", "dup1Index", "dup1ToBeMatched", "dup1ToBeMatchedAgainst",

"dup2Index", "dup2ToBeMatched", "dup2ToBeMatchedAgainst", "fileNames",

"idColor", "Duplicated","charDataList" )

## Create a data matrix that holds the duplicated patches A and B

dupA <- dup1[, c(-2:-5)]

dupB <- dup2[, c(-2:-5)]

rm("dup1","dup2")
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## Split the data by patchId. This generates 29 lists, one list per patch which contains

all 80 customers.

dupASplit <- split(dupA, factor(dupA$patchId, levels=dataOrder))

dupBSplit <- split(dupB, factor(dupB$patchId, levels=dataOrder))

dupAMatrix <- lapply(dupASplit, "[", 2:37)

dupBMatrix <- lapply(dupBSplit, "[", 2:37)

## Bootstrap each patch independently

samplingMeanCharDataDupA <- lapply(lapply(dupAMatrix, sampleBoot, n = 1000),

applyMean)

samplingMeanCharDataDupB <- lapply(lapply(dupBMatrix, sampleBoot, n = 1000),

applyMean)

#################################

## The rigger police is out, we only show an example of the usefulness of bootstrapping

par(mar=c(5,4,3,2), oma=c(3,3,1,3), col.main="blue", col.sub=1,

col.axis= "green4", col.lab="red", cex.main=1.2, cex.sub=1,

cex.axis= 0.8, cex.lab= 1.2, font.main=2, font.axis=2, font.lab=2,

xaxp=c(0,100,20), yaxp=c(0,20,10))

par(xpd=NA)

par(mfcol=c(1,2))

hist(dupA[dupA$patchId=="C10",2], breaks="Scott", main="Before", xlab="",

ylab="")

box("plot", col="red3", lwd=2)

mtext("Reflectance", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Frequency", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

hist(samplingMeanCharDataDupA[["C10"]][,1],breaks="Scott", main="After",

xlab="", ylab="")

box("plot", col="red3", lwd=2)

mtext("Reflectance", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Frequency", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 1: 10% Cyan Dot Before and After Bootstrapping",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

## Check normality

shapiro.test(dupA[dupA$patchId=="C10",2])

shapiro.test(samplingMeanCharDataDupA[["C10"]][,1])

#################################

## Average each of the 1,000 bootstrap iterations to create the bootstrapped dataset.

Two datasets are formed containing the means of each bootstrap iteration.

bootMeanDupA <- applyMean(samplingMeanCharDataDupA)

bootMeanDupB <- applyMean(samplingMeanCharDataDupB)
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## Calculate the standard error for each duplicate patch which is the standard deviation

of the bootstrapped data

stdErrDupA <- applySd(samplingMeanCharDataDupA)

stdErrDupB <- applySd(samplingMeanCharDataDupB)

#################################

## Create the principal components analysis (PCA) for the duplicated patches and their

error terms.

#### Principal components for the actual patch spectra

pcaA <- prcomp(bootMeanDupA)

pcaB <- prcomp(bootMeanDupB)

pcaErrA <- prcomp(stdErrDupA)

pcaErrB <- prcomp(stdErrDupB)

pcaDiff <- prcomp(bootMeanDupA-bootMeanDupB)## Bias

#################################

## Display the principal components

summary(pcaA)

summary(pcaB)

summary(pcaErrA)

summary(pcaErrB)

summary(pcaDiff)

#################################

## Plot the scree plots to identify the number of useful PCs

par(mfrow=c(1,2))

screeplot(pcaA, type="l"); box("plot", col="red3", lwd=2)

mtext("Number of PCs Before Levelling Off", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

screeplot(pcaDiff, type="l");box("plot", col="red3", lwd=2)

mtext("Number of PCs Before Levelling Off", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Figure 2: SCREE Plot of a Duplicate Patch and the Error Difference between

patches",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

par(mfcol=c(1,2))

screeplot(pcaARandom, type="l"); box("plot", col="red3", lwd=2)

mtext("Number of PCs Before Levelling Off", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

screeplot(pcaDiffRandom, type="l");box("plot", col="red3", lwd=2)

mtext("Number of PCs Before Levelling Off", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Figure 3: SCREE Plot of synthesized Random Data",
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side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

## To detect outliers plot eigenvalue boxplots for both the random synthesized and

characterization datasets

par(mfrow=c(1,2))

boxplot(pcaA$x, col="red", main= "pcaA", ylab="", xlab="", ylim=c(-1.4,2))

box("plot", col="red3", lwd=2)

mtext("Principal Components", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

boxplot(pcaDiff$x, col="red", main= "pcaDiff", ylab="", xlab="", ylim=c(-1.4, 2))

box("plot", col="red3", lwd=2)

mtext("Principal Components", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 4: Boxplot of Duplicate Patches and the Duplicated Patches' Error",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

## compare the above to the uncorrelated random data

par(mfrow=c(1,2))

boxplot(pcaARandom$x, col="red", main= "pcaARandom", ylab="", xlab="",

ylim=c(-1.4,2))

box("plot", col="red3", lwd=2)

mtext("Principal Components", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

boxplot(pcaDiffRandom$x, col="red", main= "pcaDiffRandom", ylab="", xlab="",

ylim=c(-1.4, 2))

box("plot", col="red3", lwd=2)

mtext("Principal Components", col="blue4", side=1, adj=0.5, line = 2, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 5: Boxplot of Synthesized Uncorrelated data and their Difference",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

## Create the biplot: PC1 vs PC2 for the ORIGINAL Patch

par(mfrow=c(1,2))

plot(pcaA$x[,1], pcaA$x[,2], xlab="", ylab="", type="n",xlim=c(-1.5,2.0), ylim=c(-

1.5,1.5),main="pcA")

arrows(0,0, pcaA$rotation[,1]*4, pcaA$rotation[,2]*4, length=0.1, angle=20,

col="red")

text( pcaA$rotation[,1]*4*1.2, pcaA$rotation[,2]*4*1.2, rownames( pcaA$rotation),

col="red", cex=0.7)
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text(pcaA$x[,1], pcaA$x[,2], rownames(pcaA$x), col="blue", cex=0.7)

box("plot", col="red3", lwd=2)

mtext("First Principal Component", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Second Principal Component", side=2, col="red", adj=0.5, line = 2, font=3,

cex=1)

plot(pcaDiff$x[,1], pcaDiff$x[,2], xlab="", ylab="", type="n",xlim=c(-1.5,1.5),

ylim=c(-1.5,1.5),main="pcaDiff")

arrows(0,0, pcaDiff$rotation[,1]*4, pcaDiff$rotation[,2]*4, length=0.1, angle=20,

col="red")

text( pcaDiff$rotation[,1]*4*1.2, pcaDiff$rotation[,2]*4*1.2, rownames(

pcaDiff$rotation), col="red", cex=0.7)

text(pcaDiff$x[,1], pcaDiff$x[,2], rownames(pcaDiff$x), col="blue", cex=0.7)

box("plot", col="red3", lwd=2)

mtext("First Principal Component", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Second Principal Component", side=2, col="red", adj=0.5, line = 2, font=3,

cex=1)

mtext("Figure 6: Biplot of the First Two Principal Components",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

par(mfrow=c(1,2))

plot(pcaARandom$x[,1], pcaARandom$x[,2], xlab="", ylab="", type="n",xlim=c(-

2,2), ylim=c(-2,2),main="pcARandom")

arrows(0,0, pcaARandom$rotation[,1]*4, pcaARandom$rotation[,2]*4, length=0.1,

angle=20, col="red")

text( pcaARandom$rotation[,1]*4*1.2, pcaARandom$rotation[,2]*4*1.2, rownames(

pcaARandom$rotation),

col="red", cex=0.7)

text(pcaARandom$x[,1], pcaARandom$x[,2], rownames(pcaARandom$x),

col="blue", cex=0.7)

box("plot", col="red3", lwd=2)

mtext("First Principal Component", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Second Principal Component", side=2, col="red", adj=0.5, line = 2, font=3,

cex=1)

plot(pcaDiffRandom$x[,1], pcaDiffRandom$x[,2], xlab="", ylab="",

type="n",xlim=c(-2,2), ylim=c(-2,2),main="pcaDiffRandomRandom")

arrows(0,0, pcaDiffRandom$rotation[,1]*4, pcaDiffRandom$rotation[,2]*4,

length=0.1, angle=20, col="red")
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text( pcaDiffRandom$rotation[,1]*4*1.2, pcaDiffRandom$rotation[,2]*4*1.2,

rownames( pcaDiffRandom$rotation),

col="red", cex=0.7)

text(pcaDiffRandom$x[,1], pcaDiffRandom$x[,2], rownames(pcaDiffRandom$x),

col="blue", cex=0.7)

box("plot", col="red3", lwd=2)

mtext("First Principal Component", col="blue4", side=1, adj=0.5, line = 2,

font=3,cex=1)

mtext("Second Principal Component", side=2, col="red", adj=0.5, line = 2, font=3,

cex=1)

mtext("Figure 7: Biplot of Synthesized Random Data for PC1 and PC2",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

##################################

## Plot the eigenvectors

par(mfrow=c(1,1))

plot(pcaA$rotation[,1],col='red',pch=15,ylim=c(-.4,.4),xaxt='n',main="A Duplicate

Set", type="b", ylab="", xlab="")

points(pcaA$rotation[,2], col='blue',pch=16, type="b")

points(pcaA$rotation[,3], col='green',pch=17, type="b")

axis(side=1,at=(1:36),labels=names(pcaA$rotation[,1]),las=2)

box("plot", col="red3", lwd=2)

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Eigenvectors", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 8: Eigenvectors plot of a Duplicate Patch Set",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

legend("topright", legend = c("PC1", "PC2", "PC3"), col= c("red","blue", "green"),

pch=15:17,

bg="gray96", horiz=F, cex=1, bty ="n")

#################################

## Eigenvalues comparison between each PC from patch A and patch B

par(mfrow=c(1,1))

plot(pcaA$x[,1], col='red', pch=16, ylim=c(-1.2,1.9), main="The First Principal

Component", xaxt='n', type="b", xlab="", ylab="")

points(pcaB$x[,1], col='blue', pch=16, type="b", xaxt='n')

axis(side=1,at=(1:29),labels=names(pcaA$x[,1]),las=2)

box("plot", col="red3", lwd=2)

mtext("Patch ID", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 9: Eigenvalues plot of PC1 for Both Duplicate Patches",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)
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legend("topleft" , legend = c("Eigenvalues Patch A, PC1", "Eigenvalues Patch B,

PC1"), col= c("red","blue"),

pch=15:16, bg="gray96", horiz=F, cex=1, bty ="n")

plot(pcaA$x[,2], col='red', pch=16, ylim=c(-1.2,1.9),

main="The Second Principal Component", xaxt='n', type="b", xlab="", ylab="")

points(pcaB$x[,2], col='blue', pch=16, type="b", xaxt='n')

axis(side=1,at=(1:29),labels=names(pcaA$x[,1]),las=2)

box("plot", col="red3", lwd=2)

mtext("Patch ID", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Eigenvalues", side=2, col="red", adj=0.5, line = 2, font=3, cex=1)

mtext("Figure 10: Eigenvalues plot of PC2 for Both Duplicate Patches",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

legend("topleft" , legend = c("Eigenvalues Patch A, PC2", "Eigenvalues Patch B,

PC2"), col= c("red","blue"),

pch=15:16, bg="gray96", horiz=F, cex=1, bty ="n")

#################################

## subtract the spectra of patch B from patch A

diffSpectra <- bootMeanDupA - bootMeanDupB

pcaDiff <- prcomp(diffSpectra)

summary(pcaDiff)

#################################

## Box plot of the diff population

spectrumColor <- hsv(c(seq(from=0.750, to=0.694, by=-1/108), seq(from=0.667,

to=0.639, by=-1/72),

0.556,0.528,0.500,0.472,0.444,0.417,0.389,0.361,0.278,0.167,0.139,0.083,0.058,0.02

8,

0.000,0.972,0.944,0.944,0.944,0.944,0.9305,0.917,0.917,0.917,0.917,0.889), 1.0,

1.0)

par(mar=c(5,5,3,2), oma=c(3,3,1,3), col.main="blue", col.sub=1,

col.axis= "green4", col.lab="red", cex.main=1.2, cex.sub=1,

cex.axis= 0.8, cex.lab= 1.2, font.main=2, font.axis=2, font.lab=2,

xaxp=c(0,100,20), yaxp=c(0,20,10))

spectralError <- bootMeanDupA-bootMeanDupB

par(mfcol=c(2,2))

spectralErrorCyan <- spectralError[ c("C10", "C20", "C30", "C40", "C70", "C85",

"C100", "Mix", "Paper"),]

boxplot(spectralErrorCyan, main="Cyan", notch=TRUE, col=spectrumColor,

at=seq(1,36,1), xlim=c(1,36),las=2)

###########

box("plot", col="red3", lwd=2)

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)
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mtext("Spectral Error", side=2, col="red", adj=0.5, line = 3, font=3, cex=1)

###########

spectralErrorMagenta <- spectralError[ c("M10", "M20", "M30", "M40", "M70",

"M85", "M100", "Mix", "Paper"),]

boxplot(spectralErrorMagenta, main="Magenta", notch=TRUE, col=spectrumColor,

at=seq(1,36,1), xlim=c(1,36),las=2)

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Spectral Error", side=2, col="red", adj=0.5, line = 3, font=3, cex=1)

###########

spectralErrorYellow <- spectralError[ c("Y10", "Y20", "Y30", "Y40", "Y70", "Y85",

"Y100", "Mix", "Paper"),]

boxplot(spectralErrorYellow, main="Yellow", notch=TRUE, col=spectrumColor,

at=seq(1,36,1), xlim=c(1,36),las=2)

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Spectral Error", side=2, col="red", adj=0.5, line = 3, font=3, cex=1)

###########

spectralErrorBlack <- spectralError[ c("K10", "K20", "K40", "K60", "K80", "K100",

"Mix", "Paper"),]

boxplot(spectralErrorBlack, main="Black", notch=TRUE, col=spectrumColor,

at=seq(1,36,1), xlim=c(1,36),las=2)

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Spectral Error", side=2, col="red", adj=0.5, line = 3, font=3, cex=1)

mtext("Figure 11: Boxplot of Spectral Error between Duplicate Patches",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

### Cyan Plot For the Standard Error

xlabs <- as.character(seq(from=380,to=730,by=10))

listColor <- rep("cyan", each=9)

listpatchName <- c("C10", "C20", "C30", "C40", "C70", "C85", "C100", "Mix",

"Paper")

listplotColor <-1:9

List <- list(Color=listColor, patchName=listpatchName, plotColor=listplotColor)

scatterPlot <- function(i, listColor, listpatchName, listplotColor){

points(stdErrDupA[List[[2]][i],], col=List[[3]][i], type="b", pch=14+i, cex=1.2)

axis(1, labels=xlabs , at=1:36, las=2)}

par(mar=c(5,5,3,2), oma=c(3,3,3,3), col.main="blue", col.sub=1,

col.axis= "green4", col.lab="red", cex.main=1.2, cex.sub=1,

cex.axis= 0.8, cex.lab= 1.2, font.main=2, font.axis=2, font.lab=2,

xaxp=c(0,100,20), yaxp=c(0,20,10))

par(mfcol=c(1,1))

plot(stdErrDupA, type="n", xlim=c(1,36), ylim=c(0,0.008), xlab="", ylab="",

main="Cyan", xaxt="n", las=2)

box("plot", col="red3", lwd=2)
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lapply(1:9, scatterPlot)

par(xpd=FALSE)

abline(v=seq(from=1,to=36, by=1), h=seq(from= 0.000, to=0.008, by=0.001), lty=1,

col="darkgray")

par(xpd=NA)

legend("topleft" , legend = listpatchName, col= listplotColor, pch=15:23,

bg="gray96", horiz=F, cex=1, bty ="n")

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Reflectance Standard Error", side=2, col="red", adj=0.5, line = 3, font=3,

cex=1)

mtext("Figure 12a: Plot of the Standard Error Per Patch for Duplicate Set A: Cyan

Tone Ramp",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

### Magenta Plot for the Standard Error

listColor <- rep("magenta", each=9)

listpatchName <-

c("M10","M20","M30","M40","M70","M85","M100","Mix","Paper")

List <- list(Color=listColor, patchName=listpatchName, plotColor=listplotColor)

par(mfcol=c(1,1))

plot(stdErrDupA, type="n", xlim=c(1,36),ylim=c(0,0.008), xlab="", ylab="",

main="Magenta", xaxt="n", las=2)## extreme tick marks and the number of inter-

vals

box("plot", col="red3", lwd=2)

lapply(1:9, scatterPlot)

par(xpd=FALSE)

abline(v=seq(from=1,to=36, by=1), h=seq(from= 0.000, to=0.008, by=0.001), lty=1,

col="darkgray")

par(xpd=NA)

legend("topleft" , legend = listpatchName, col= listplotColor, pch=15:23,

bg="gray96", horiz=F, cex=1, bty ="n")

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Reflectance Standard Error", side=2, col="red", adj=0.5, line = 3, font=3,

cex=1)

mtext("Figure 12b: Plot of the Standard Error Per Patch for Duplicate Set A: Magenta

Tone Ramp",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

### Yellow Plot for the Standard Error

listColor <- rep("Yellow", each=9)

listpatchName <- c("Y10","Y20","Y30","Y40","Y70","Y85","Y100","Mix","Paper")

List <- list(Color=listColor, patchName=listpatchName, plotColor=listplotColor)
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par(mfcol=c(1,1))

plot(stdErrDupA, type="n", xlim=c(1,36),ylim=c(0,0.01), xlab="", ylab="",

main="Yellow", xaxt="n", las=2)## extreme tick marks and the number of intervals

box("plot", col="red3", lwd=2)

lapply(1:9, scatterPlot)

par(xpd=FALSE)

abline(v=seq(from=1,to=36, by=1), h=seq(from= 0.000, to=0.008, by=0.001), lty=1,

col="darkgray")

par(xpd=NA)

legend("topleft" , legend = listpatchName, col= listplotColor, pch=15:23,

bg="gray96", horiz=F, cex=1, bty ="n")

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Reflectance Standard Error", side=2, col="red", adj=0.5, line = 3, font=3,

cex=1)

mtext("Figure 12c: Plot of the Standard Error Per Patch for Duplicate Set A: Yellow

Tone Ramp",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)

#################################

### Black Plot for the Standard Error

listColor <- rep("Black", each=8)

listpatchName <- c("K10", "K20","K40","K60","K80","K100" ,"Mix","Paper")

List <- list(Color=listColor, patchName=listpatchName, plotColor=listplotColor)

par(mfcol=c(1,1))

plot(stdErrDupA, type="n", xlim=c(1,36),ylim=c(0,0.008), xlab="", ylab="",

main="Black", xaxt="n", las=2)## extreme tick marks and the number of intervals

box("plot", col="red3", lwd=2)

lapply(1:8, scatterPlot)

par(xpd=FALSE)

abline(v=seq(from=1,to=36, by=1), h=seq(from= 0.000, to=0.008, by=0.001), lty=1,

col="darkgray")

par(xpd=NA)

legend("topleft" , legend = listpatchName, col= listplotColor, pch=15:23,

bg="gray96", horiz=F, cex=1, bty ="n")

mtext("Wavelength", col="blue4", side=1, adj=0.5, line = 3, font=3,cex=1)

mtext("Reflectance Standard Error", side=2, col="red", adj=0.5, line = 3, font=3,

cex=1)

mtext("Figure 12d: Plot of the Standard Error Per Patch for Duplicate Set A: Black

Tone Ramp",

side=1, line=1, cex=1.4, col="firebrick", font=2, outer=TRUE)

box(which="inner", col="blue4", lwd=2)
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