
JDF File Viewer

Dr. Thomas Hoffmann-Walbeck, Dr. Barbara Dörsam, Mr. Tobias Zeller*

Keywords: JDF, java, software, workflow

Abstract

A software is presented that reads JDF files and shows (part of) the content in an

Explorer-like fashion. The main objective of the software is to visualize the most

important information inside a JDF file to people that are not JDF specialists.

Therefore, the hierarchical structures of JDF-nodes are rearranged to make the

content easier to understand for human beings. A database is used to give additional

information about the nodes and the resources to the user.

Introduction

With the help of the Job Definition Format (JDF) (CIP4, 2008) one can define the

characteristics of almost every print product as well the production steps that are

needed to produce it. This might justify the fact that JDF files are difficult to read

even though they can be easily opened with a browser or an XML editor (Figure 1).

106 2013 TAGA Proceedings

______

*Stuttgart Media University, Nobelstr. 10, 70563 Stuttgart, Germany

Figure 1: Small part of a typical JDF file, displayed by a browser (left) and a XML-Editor (right)



There are some reasons for that:

• JDF files consist of highly structured JDF nodes which describe very different

things like the product itself, the production processes or some kind of

process collections. One might need to evaluate different attributes of the

JDF node in order to determine what kind of JDF node is present. Sibling

nodes in the JDF-tree can be of different kind, like a description of a product

part (e.g. cover or content), a process or a group of processes.

• The dependencies between the production processes are only given indirectly

by the input- and output resources that are involved. In particularly, the

processes are not ordered by the more common categories of prepress,

press and postpress.

• Input and output resources are normally attached to each JDF node. These

resources, however, need not to be stored in those nodes that are using

them. They are referenced by IDs. Also, resources can reference (or contain)

other resources.

• Some of the resources might be partitioned. For example, resources like

ink, plates and folding sheets are such structured resources. They can be

viewed for the whole job or for specific parts only. The Ink-Resource for
instance might get partitioned to different signatures, different sheets,

front and back of each sheet and to each separation of both sides. The

FoldingParams-Resource, however, can be only partitioned to different

signatures and sheets.

• In general, a JDF file contains a lot of (necessary) technical data

concerning modifications of the file, data types and the like. Also, a

typical JDF file is quite extensive. JDF files for entire print jobs are

normally over 100 A4 pages long.

2013 TAGA Proceedings 107

Figure 2: Example for dependencies between JDF nodes and resources



Thus, for most people JDF is like a black box. This is all right in many cases, but

if somebody needs to analyze the JDF-interface between two or more JDF-modules

from different vendors it does not suffice. An analysis might also be necessary if

one plans to setup a new workflow or tries to resolve a severe error that might

occur in an existing workflow.

The following example should explain what is meant by that: A JDF file for a folding

machine can either contain basic administration data like the job-ID, the customer

name and the like or additionally presetting data, which is stored in the JDF

resource FoldingParams. With the latter the file might simply contain the imposition

scheme number according to the Fold catalogue that is listed in the JDF specification

or it might specify the exact folding sequence and positions explicitly. An imposition

scheme, however, is not enough to define the folding positions accurately (for

example, if binding flaps are involved). Thus, for a workflow implementation in a

print shop it makes a big difference what kind of JDF is sent to a device like a folding

machine as well as what kind of JDF structure the folding machine can handle. But

the vendor of a JDF module will call the software “JDF savvy” in any case and so

the workflow managers have a hard time to evaluate the usefulness of a specific

JDF interface before it is implemented. And even if after the installation and the

presetting one of the devices does not work as expected it is difficult to find out the

reason for it. It could be caused by the JDF generating module, that does not support

some details, or by the JDF reading device or by both.

This motivated us to write software for integrators, workflow managers and students

to give them an idea about the contents of JDF-files without assuming that they

know much about the JDF-terminology. Our objective was to write a JDF-viewer,

explaining the processes and resources that are involved, resolving the references,

re-organizing the processes to the categories prepress, press and postpress, emphasizing

import properties of the processes and resources and omitting all less important

details in the same time.

Methods

The software has been written in Java, using the standard JAVA-library

“JDFLibJ-2.1.4a.62” provided by the CIP4-organisation. Furthermore, we used a

database management system to store information and textual descriptions for all

112 JDF-processes and 226 JDF-resources.

The software application consists of three parts:

• JDF import. Here certain nodes and resources as well as some of the values

of their attributes are stored in a internal data structure.

108 2013 TAGA Proceedings



• Evaluation of the internal data structure. Here the information in the database

is used to analyze the JDF. In particular all processes are assigned to the

categories prepress, press and postpress. For each process and each

resource the standard text for describing the elements is retrieved from the

data base. Individual properties of certain resources are generated, showing

for instance certain properties of some partitioned resources.

• Generation of the graphical output (as well as a textual one), showing the

tree structure and some information about the processes and resources.

For this the component JTree from the package javax.swing is used.

Results

The GUI of the JDF File Viewer can be seen in Figure 3. The lower part of the window

shows the typical tree structure of the nodes and resources. One can navigate

through the tree similarly to Windows Explorer. The top part displays some

information concerning the folder that has been selected in the lower window.

When starting the Viewer only the print job’s name (“Students Brochure”) and in

the next level “Product Description” and “Production” are shown. The folder

“Product Description” contains general information about the JDF file as well as

the nodes and resources of the JDF file that describes the projected print job, while

“Production” let you see the actual processes and resources concerning the production.

Clicking on the folder “General Description” one gets to the level of “Final

Product” and “Partial Products”. The “Final Product” represents the end product

that the customer ordered and which consists of partial products. In this sample job

there are three partial products: “Cover”, “Content” and “Foldout 1”.

The folder “General Information” has been selected in Figure 3 and some statistical

data and other properties of the JDF file in general are displayed. First the number

of JDF nodes in the file is listed. This number gives some hint about the complexity

of the file. Next the number of Product nodes is given, representing the final product

and product parts. The production nodes follow and are classified in prepress, press

and postpress. But not every node can get allocated to one of the three production

areas. In a typical JDF file there are, in fact, quite a number of private process

nodes (11 in our example). Since these are proprietary nodes designed by some

vendor they cannot get analyzed automatically. The same holds for private process

groups. Furthermore, the JDF file can contain process groups and combined

processes which describe processes in at least two areas. A node representing the

actions of a digital print press can, for example, contain processes in prepress,

press and postpress. These process groups and combined processes are labeled

with “non-classified” in the GUI. It should be added that a high number of private

nodes points towards a high probability that the JDF file is not designed for an

open and interface to another external module.

2013 TAGA Proceedings 109



Gray Boxes are containers of several processes with a specific goal. They are mostly

written by a MIS, which does not know all technical details that are necessary to run

processes. That is, Gray Boxes, in general, do not contain or reference all their

resources and thus they can not be executed andmust be transformed to processes before.

ICS stands for Interoperability Conformance Specification”. These papers describe
different sets of properties that a JDF writer and a JDF reader for a certain class of

devices are supposed to support. A system integrator should check these entries

first if he or she analyzes the compatibility between two JDF modules. Finally, the

number of references of processes to resources gives another hint to the complexity of

a file.

Figure 4 shows the situation when the folder “Final Product” and Partial Products”

are opened: they contain input- and output resources. Most of these resources are

called “intent resources” in the JDF terminology, because they define the intentions

how a product (part) is planned. In the information window one can read two

different entries concerning the resource LayoutIntent. The sentence “This

Resource records the size of the finished pages for the product component as well

as the number of pages for a product (part)” comes from the abovementioned database.

For each process and each resource there is as short text in the database explaining

the element (see Figure 8). The software connects the names of the processes and

resources in the JDF file with the appropriate data base entries. The number of

pages (96), however, is directly taken from the JDF file. The software reads

properties of some attribute values or sub-elements to describe a resource more

precisely. This has to be done individually for a specific type of resource.

Not all input resources are intent resources, especially not those from the “Final

Product”. Here we see three Components as input resources, which are, in fact, the

output resources of the three partial products. That is, for the final products one

needs the cover, the content and foldout.

110 2013 TAGA Proceedings

Figure 3: General Description of the JDF File



Opening the production folder, one gets the folders “Final Product” and the “Partial

Products” in the next level once again (see Figure 6). Stepping one level further down,

however, one does not see the resources right away like it was the case with the folder

“Product Description”, but rather has an intermediate layer, namely the production

areas “Prepress”, “Press” and “Postpress”. These categories are very familiar to everybody

in the graphical industry and they make it easier for the user to navigate. Since these

categories, however, are not explicitly stated in the JDF-notation, our software has to assign

to each node one of the three during the analysis of the data. Figure 5 shows the idea.

2013 TAGA Proceedings 111

Figure 4: Input resources of the finished product and the partial products



Partial products typically need prepress, press and postpress activities in order to

produce them. In the very end the final product is assembled with all partial products.

Thus, the production of a final product might also need postpress activities for the

assembling task. In addition it might incorporate some prepress processes to prepare

the PDL-pages for all product parts.

In Figure 6 the tree of the folder “Cover” is further opened and one can observe

that the category “Press” contains only one process, i.e. ConventionalPrinting. For
this process the input resources are visible.

The explanations to the processes and resources can be read again in the top part

of the window. The information that is displayed is fed by three different sources,

where the first two have been discussed above with Figure 4.

• the database,

• individual properties of the elements to describe them more precisely.

• certain JDF internal, optional attributes like “DescriptiveName”,

Concerning the resource “Device”, the sentence “Information about a….” comes

from the database, the MIS has assign “Speedmaster CD 74-6L (HdM)” to the

value of the attribute DescripveName and the term “CD 74 C 59.5*33.5” has been

extracted specifically for the Device resource from the JDF-file.

Nodes are tree-like structured. The structures of the resources are also not flat but

can contain or reference other ones. Partitioned resources, in particular, are

hierarchically structured resources. For example, the FoldingParams resource

defines the folding parameters and may be partitioned for different signatures and

sheets. Thus the “overall” FoldingParams resource can contain several

112 2013 TAGA Proceedings

Figure 5: The JDF structure (left) is rearranged in our software (right)



2013 TAGA Proceedings 113

Figure 6: Resources for the production are ordered by the common notions of prepress, press and postpress



FoldingParams resources for all signatures, and a FoldingParams resource for

each signature can again include several FoldingParams resources for each sheet.

Thus if one wants to read the folding schemes (i.e. the Folding Catalog number)

for each sheet, one has to descent to the lowest hierarchy level. The JDF Filer Viewer

flattens this structure and lists all these schemes one by one. Figure 7 is an example

of the partitioned resource FoldingParams, showing Folding Catalogue number

F2-1 for the first two signatures.

JDF nodes and resources can contain other elements. The precise specification of the

folding sequence and folding positions can be found, for example, in the optional

Fold element inside the FoldingParams resource. The JDF File Viewer software

looks for these elements and informs the user, if such an element has been found in

one of the resources. In the information field of Figure 7 the sentence “Folding

Positions are given in some cases” is displayed, if such Fold elements have been found.

Implementation

Assigning a process to the right production area is done with the help of a database.

In the database table there simply is one column specifying the “Production Area” for

each node. Figure 8 shows some part of this table. The numbers 1, 2 and 3 denote

the areas prepress, press and postpress respectively. The column “kind” distinguishes

between the different kind of JDF-nodes, like process nodes, product nodes,

process group nodes or combined process nodes. The values of these columns are filled

in manually. The column “Type” contains the value of the Type-Attribute of JDF-nodes.
All processes, for example, have different entries for this attribute. Finally the

entries in the column “Description” give a short explanation to each process.

There is similar table for the 218 resources that are specified in the JDF specification.

This table, however, does not have the columns “Production Area” and “kind”.

Both data base tables are read in and stored into internal structure, when the software

starts. After a JDF file has been selected, the file gets parsed and the root node gets

determined using the standard CIP4-library. How this works can be looked up at

(Hoffmann-Walbeck & Riegel, 2012). Next all nodes and the references resources

are parsed and certain attributes are stored into linear lists (like Type, Types,

114 2013 TAGA Proceedings

Figure 7: Partitioned Resource FoldingParams



DescriptiveName, but also technical things like the node level in the tree hierarchy,
the id and so on). These entries in the list are evaluated to find out the Production

area of a node (which is easy for simple processes by checking the data base, but

harder for Combined Processes or Process Groups). Furthermore, Partitioned
Resources get handled as well for some specific resource types in order to find out

particular attributes. In the example above (see Figure 4) the number of pages in

the product part “Content” is found in the sub-element Pages, which has the attribute
Preferred. Finally, the graphical output gets initiated.

In the following the handling of Partitioned Resources is explained on the source

code level: It has been mentioned above, that Partitioned Resources are hierarchically
structured, i.e. the top level of the resource contain the next level and so on. Figure

9 shows these sub-resources for a very simple FoldingParams in a graphical manner.

Each Signature could have, in fact, more than one Sheets, of course, and each Sheet
could have more than one BlockNames.

Because resources can be partitioned in different ways and down to different

depths, there is an attribute in the top resource, defining to which extend the

resource can be partitioned. This attribute is called PartIDKeys. The value

“SignatureName SheetName Side Separation”

is an appropriate partition concerning the resource Ink, for example. On the other

hand the value

“SignatureName SheetName BlockName”

is a correct partition for the resourceFoldingParams. Each folding sheet of a print sheet is
identified byBlockName. These sub-resources are implemented in JDF byXML-elements.

2013 TAGA Proceedings 115

Figure 8: Database table concerning the JDF nodes



If one wants to read a certain attribute value of each partition one has to browse

through all sub-elements. For example, if we like to find the attribute FoldCatalog
(=folding scheme according to the Folding Catalogue) of a FoldingParams
resource for each BlockName, one has to follow the branches of the resource-tree

and read the FoldCatalog each time for the deepest resources (the leaves).

Moreover, since attributes can be inherited from other resources higher up the tree,

one actually has to consider the attribute of the other resources, that is, those that

are not leaves. In some cases, one is not interested in any particular attribute of a

Partitioned Resource at all, but rather only in the structure of the Partitioned
Resource. This is the case, for example, for the resource Ink.

Figure 10 lists the source code that handles the Partition Resource. The method

processPartitionedResource (line 7) generates the sort of text that is shown in

Figure 7. For doing so, a partitioned JDFResource named “Resource” is needed as

input as well as the desired attribute “attr”. If the attribute is an empty String, only

the structure of the Partitioned Resource is relevant. Otherwise, the attribute value
is attached to the output text, which is presented in Figure 7. Furthermore

“PartIdKeys” is input and – for technical reasons – the actual depth of the

resource-tree.

Lines 2 and 5 in the Figure 10 show the calls for the FoldingParams and Ink
(neglecting the return values).

The final level of partition can (theoretically) be any non-negative integer. We

therefore use the method recursively. Since we want to collect the appropriate text

from each stage, we need to have the StringBuffer text not only as an output of the

method but also as an input.

In line 15 the partition names are looked for. In line 18 the value of the desired

attribute is appended to the text. In lines 27 to 37, finally, we are looking for

children-nodes with the same name and apply the method to them too (line 38).

116 2013 TAGA Proceedings

Figure 9: Simple Partitioned Resource



Discussion

This presented software tool is a prototype only. It might be enhanced in the future. One

option would be to checkmore attributes of individual processes or resources. One other

optionwould be to pop up the JDF source code,whenever clicking a process or a resource.

Finally, it would be worthwhile to make the softwaremore robust and usable for everyone.

The design and the programming have been carried out within a research project at

the University of Media, Stuttgart.

Selected Bibliography

CIP4, (Cooperation for Integration of Processes in Prepress, Press and Postpress),

2008, “JDF Specification, Release 1.4”, www.cip4.org

Hoffmann-Walbeck T. and Riegel, S., 2010, “Analysis of JDF files”, Advances in

Printing and Media Technology, Vol. XXXVIII (iarigai, 2010), pages 387-393

Hoffmann-Walbeck T. and Riegel, S., 2012, “JDF Workflow”, published by

Printing Industries of America, ISBN ISBN:9780883627181

2013 TAGA Proceedings 117

Figure 10: Java Source Code for processing Partitioned Resources


