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Abstract: Statistical independence is one of the most important statistical ideas and 
is required in order to generalize a conclusion from a sample to a population. The 
estimated differences between averages for phenomena of interest take center stage 
and much less attention is devoted to variation, however. The study of variation is 
a key aspect to generalizing results and making predictions. This paper addresses 
concepts of variation in statistics and attempts to simplify various statistical ideas. 
Two cases will be presented for the need of statistical understanding in day-to-day 
life garnered by an enhanced understanding of statistical independence and variation. 
An industrial example and a lithographic example are used to demonstrate the steps 
needed to analyze seemingly innocuous dataset and how the application of these 
concepts is crucial.

Introduction

- George Box [1]

 - George Box [1]

This paper was written for those who collect and try to make sense of data and was 
designed to be understood by data analysts, industrial experimenters, scientists, and 
engineers. Every effort was made to avoid mathematical equations. The goal of this 
writing is to educate those who have not had much statistical experience while also 
correcting and updating the knowledge of those who may have incorrectly used 
statistics in the past.

Applied statistics is an integral part of the information gathering and learning process 
for any industry. Statistics is the science of describing past events and predicting 
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those that may come in the future. By gathering and analyzing data with a set of 
tools, predictions about the future may be made, allowing for informed decisions. 
Furthermore, statistics is a science that attempts to differentiate experimental error 
in a system from the change caused by a phenomenon. A statistical thinker always 
embraces errors as the focus of an analysis to generate a concrete answer from a 
dataset riddled with random error or variation.

A statistical mentality is quite applicable to day-to-day life: familiarity with the 
language of statistics allows us to critically appraise and interpret the world around 
us. Statistical terminology is encountered frequently in the media. Estimates, 
signi cance, pro ections, averages, median, margin of error, scienti c poll, 
non-scienti c poll etc. are all statistical concepts and terms. For example, statistics 
can help us understand the meaning of non-scienti c poll. This refers to a poll in 
which the respondent selection is biased  only people who read or watch a speci c 
media provide their opinion. It should be concluded that the story is propaganda 
and bad science. The poll does not re ect the opinions of the general public, and 
the results should be discounted. Similarly, the same concept applies to product 
sampling during testing as will be explained in the next sections.

Statistical Independence

The critical principal that has been violated in a non-scienti c poll is that of statistical 
independence. Statistical independence means that the opinion of one respondent 
does not affect the opinion of any other respondent. A pollster is attempting to 
represent an entire population. Say the pollster has access to and surveys only a 
speci c special interest group at a conference. In this case, every member of the 
sample group will have similar voting patterns for that particular topic, especially 
if they are free to discuss their opinions with each other after the question is asked. 
Their opinions will be similar because they are now statistically dependent. This is 
common sense; the opinion of a group that has the same interests will be similar. 
Votes derived only from a special interest group do not represent the unbiased opinion 
of the whole population.

The purpose of an opinion poll is to ask questions of a small sample of a population 
of people who can represent the attitudes, opinions, or projected behavior of an 
entire population (Figure 1). In effect, the fundamental goal of an opinion poll is to 
come up with the same results that would have been obtained had every member 
of a population been interviewed. The key to reaching this objective is equal 
probability of selection. Every member of a population must have an equal chance 
or probability of being selected in a sample. The sample will then be representative 
of the population, and statisticians call it statistical independence or independent 
sampling.
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Testing a product or a new procedure and making an inference on future performance 
is similar to polling. The conclusion from a relatively small sample can predict 
performance if the sampling is performed correctly. The conclusion reached would 
be biased without statistical independence.

For an opinion poll or any product testing to be successful, every respondent must 
have an equal chance of being included in the sample; this is the key. Polling science 
is highly successful in predicting the outcome despite the fact that members of a 
polling sample are diverse and that there is always natural variation in any sample.

Variation

Variation is an inevitable xture of life. Those that use statistics must constantly be 
aware of how variation affects all decision-making. While variation will always be 
present in any system, it can be reduced. This reduction can improve the quality of 
a product, lower its customer complaints, and reduce production waste.

Statistical thinking always embraces the concept of variation as an observable reality, 
present everywhere and in everything. In order to determine whether a change observed 
in the result of a process can be explained by a modi cation deliberately applied or 
not must take variation into account (Figure 2). This will be clearly shown in the 

Figure 1: 

Figure 2:
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industrial experiment below where a plant manager wants to increase the production 
yield by switching from his standard process A to an assumed better process B. 
Variation is the reason why sophisticated statistical methods are developed to lter 
out the noise from the variable of interest. The success or failure of any statistical 
analysis is hinged on the correct determination of the magnitude of noise since 
noise is used as the scaling factor.

The occurrence of random variation or noise can be demonstrated with an adaptation 
of the EP Box paper helicopter [2] experiment. In this experiment, the paper 
helicopter is dropped ten times to the oor under as similar conditions as possible 
in an attempt to hit an arbitrary target such as coin on the oor (Figure ). The 
distance between the bottom of the helicopter at its falling spot on the oor and the 
coin represents the unexplained variation or random variation. The point where 
the helicopter hits the oor is schematically represented by the blue dots. The exact 
same process is being carried out, but the random variation inherent in the process 
causes the airplane to land in different spots each time. When a partner with a 
notebook or fan creates a wind draft next to the ight path of the helicopter, it creates 
a different kind of purposeful variation. This is demonstrated by the red dot. This 
purposeful variation is analogous to an action to improve a process.

Variability Decomposition

In order to obtain more precise results, data should be analyzed by decomposing 
variation into its different sources. Because every process has inherent variation, it 
can be dif cult to differentiate between the normal variation of a system and variation 
due to a change applied. In order to do this, the variance should be compared to 
what chance alone would yield. It can be visualized that interference with the process, 
such as fanning the helicopter 3, produces different kinds of variation. These are 
called explained, controlled, or effect variation. Data analysts generally attempt to 

nd causes for this explained variation, referred to as the signal. Uncontrolled variation, 
or noise, is what is leftover once all the patterns or signal have been removed. 

oise, by de nition, is the variation when no patterns or signal can be found. The 
day-to-day data is always a combination of signal in the presence of noise. The key 
to a successful analysis is to separate the signal from the noise while being careful 
not to conclude a pattern where none exists.

Figure 3:
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Figure 5: 

Figure 4: 
Mathematicians and data analysts exploit the idea of signal versus noise (or variation) 
in many industrial applications such as arti cial intelligence, machine learning, and 
pattern recognition. To demonstrate, imagine that a snake (Figure 4) is on a rock. 
The skin of the snake has a pattern. If this pattern matches that of the rock upon 
which the snake is situated, the snake will be invisible. The same applies to data. 
If the signal that is being searched for matches the noise of the system, the signal 
will not be seen. Applied to industry, if a new raw material is to be tested and the 
process is highly variable, it might not be possible to conclude concretely if the new 
material is better or worse. If the noise is high, the signal might get lost.

Most of data analysis and statistical procedure is focused on understanding variation 
induced by special causes, such as fanning the paper helicopter or testing new 
materials or procedures. This can be called treatment, since it was purposefully 
imposed on the system. This produces extra variability that is different from the 
variability caused by the noise (Figure 5). The treatment could have been trialing 
a better design for paper helicopter to resist the wind! The existence of the random 
variation is a nuisance that disguises the treatment. In order to determine the effect 
of the treatment, the noise must be investigated.
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Industrial  Experiment

Throughout this paper, a practical industrial experiment, given by George Box in 
his book , is used to demonstrate critical statistical 
thinking. It is a simple example with far reaching applications frequently encountered 
in many industrial situations. The industrial question is as follows: a plant manager 
wants to increase production yield. Process A represents his standard production 
process and process B is assumed to be the improved process. Does process B produce 
a higher yield than process A

The plant manger performs the following comparative experiment: ten consecutive 
batches were manufactured using process A, produc- tion was changed afterwards 
to process B, and ten more consecutive batches were produced.

Analysis Using External Dataset

Typical data analysis is performed on groups, not individual data points. Groups are 
treated as the observations in the analysis. The test data and historical data of ten 
individual batch yields are aggregated into group means. The follow represents the 
sampling that the plant manager accomplished:

• Two ten consecutive batch experiment

• Groups of the two ten batches are averaged to obtain the groups sample means

• Groups sample means were subtracted from each other to produce what is 
termed experimental difference

• 210 historical yields

• Divided into groups of ten consecutive batches to be similar to the two ten-
batch experiment

• Groups of ten consecutive batches are averaged to obtain the group means

• Groups means were subtracted from each other to produce what is termed as 
historical reference

Descriptive and Inferential Statistics

In any data evaluation, analysis should begin with a picture showing the collected 
raw data using appropriate, descriptive graphs, depending on the data type. These 
pictures are referred to as descriptive statistics. In fact, statistics as a science can 
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be divided into two branches: descriptive and inferential statistics. Inferential 
statistics are concerned with making predictions, or inferences, about a population 
from observations, such as predicting if process B has higher yield than process A. 
Simply put, this branch of statistics evaluates a sample and attempts to generalize 
the results to the much larger population allegedly represented by the sample. For 
descriptive statistics, if a pattern over time is being investigated, scatter-plots (Figure 
6) and (Figure 7) are used. These plots have time plotted on the x-axis and the data 
value (yield) plotted on the y-axis. For patterns unrelated to time, frequency plots 
are used. Examples of these are histograms (Figure 8), stem-and-leaf plots (Figure 
9), and box-and-whiskers plots (Figure 7) superimposed on a scatter-plot.

Experimental Difference in Means

The experimental difference between two processes is calculated by subtracting the 
ten-batch average yield of process A from the ten- batch average yield of process B 
and is found to be equal to 1.3 units. In the case of the plant manager, higher yield 
is considered desirable.

After determining an experimental difference of 1.3 units, it is necessary to count 
how many times a 1.3 unit difference appears in the 210-batch historical reference. 
This will indicate whether process B does have a positive impact on the production 
yield. If a difference of 1.3 units rarely occurs in the historical reference, then process 
B is probably better than process A. If the difference is more prevalent, the plant 
manager may conclude that the difference is nothing more than the expected 
variation of the typical production process. In other words if the experimental  
difference is a common occurrence in the historical reference then process A and 
process B are practically the same. The conclusion would be that investing to 
change from process A to process B is a waste of money.

Figure 6: 

Figure 8:  

Figure 7:  

Figure 9:  
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The historical reference shows that only 4.7% of the data are larger than or equal 
to 1.3 units. This is rare, and therefore it should be suspected that process B produces  
higher yield than process A. The historical reference dataset provided all the  
information needed to make a judgment on how the difference between process A 
and process B should be viewed. It shows the probability that the results of the analysis 
could have occurred only by chance. In other words, the historical reference provided 
a reference dataset or distribution to evaluate how signi cant the average between 
means should be considered.

Cost of Formal Statistical Procedures

In the above analysis, no formal statistical procedures were used, only simple ad-
dition and division. The use of statistical procedures comes with restriction on the 
collected data, such as statistical independence, that must be obeyed. Statistical in-
dependence in the production example requires that the yield of any batch does not 
affect the yield of any other batch. It caries the same above mentioned idea of the 
need for independence in polling. If the historical yield values are independent of 
each other, the occurrence of one yield does not affect the occurrence of the other.  
The 210-entry industrial historical data cannot assume independence of yields; 
remnant product in the vat assures those consecutive batches are dependent.  
Likewise, the experimental data A and B cannot claim independence.

Similar thinking can be expanded to many industrial applications. In the printing 
production world, serial dependence is everywhere. Consecutive printed samples, 
collected from a given press-folder, are guaranteed to be serially dependent. Formal 
statistical procedures that depend on independence cannot be used on this type 
of data without further manipulation and/or precautions to induce independence.  
Violation of these restrictions can have a detrimental effect on the validity of the 
results and sometimes cause the wrong conclusion to be reached.

One frequently used formal statistical procedure, the t-test, puts considerable 
restriction on the collected data. The t-test is not appropriate to make a judgment 
on how signi cant the experimental differences in the plant experiment are since 
the collected data are not independent. If the t-test is assumed, incorrectly, to be 
appropriate in the above industrial example, it would demonstrate whether the 
experimental difference is unlikely to have occurred because of random variation 
without the need for historical data. This same exact question was answered by the 
use of the historical reference.

In many industrial situations, it is not always possible to have relevant and reliable 
historical data to judge the signi cance of the experimental difference. In the absence 
of relevant and reliable historical data, experimenters typically use the t-test to test 
the signi cance of the experimental difference and assert that the tested samples 
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represent future performance. The t-test uses only the samples collected during the 
test. This type of data is called an internal dataset since it is collected strictly from 
the sample data.

If the plant manager uses the t-test, without the knowledge that the data is not  
independent, the result of analysis will indicate that the experimental difference 
occurs 19.5% of the time during typical production. It shows that the difference is 
more common and con icts with the prior conclusions of 4.7% using the historical  
reference data. This is at the core of determining the appropriate analysis for a test  
to reach the correct conclusion. The preceding case violates the independence  
assumption of the t-distribution. The two ten- batch samples from process A and  
process B were treated as independent random samples, but they certainly are not. 
They are serially correlated samples. Consequently, the wrong conclusion is reached.

Absence of Historical Data

The plant experiment analysis so far relied exclusively on the historical reference 
data to assess the signi cance of the experimental difference. If the historical reference 
data does not exist and if the plant manager followed the same procedure to perform 
the experiment, no correct conclusion can be reached. There will be no clear direction 
of what process the plant be following to improve yield.

If the plant manager knows that he does not have historical data and the t-test requires 
independent data then he must change his testing procedure to induce independence. 
He would assign the labels ’process A’ and ’process B’ randomly to the test to 
be performed and chooses which process to test accordingly. The t-test can then 
be used to test the signi cance of the difference between processes A and B. The 
toning example below, in the Lithographic Experiment, demonstrates the proper 
sampling to induce independence. With independent sampling there is no need for 
historical data. The two statistical analysis tools: Descriptive and inferential analyses 
are also demonstrated as well.

Lithographic Experiment

Modern offset lithography utilizes a exible, grained, and anodized aluminum 
image carrier covered with a photosensitive polymer layer. The image to be 
reproduced is created with an appropriate laser to harden the image location. The 
un-imaged soft photosensitive polymer is removed with a developer, exposing the 
grained and anodized aluminum layer. This aluminum image carrier is mounted on 
a lithographic press to reproduce the desired image on paper or lm. During the 
printing process, two uids are needed for the reproduction: a lithographic ink and 
an aqueous dampening solution known as water. The water acts as a barrier, 
disallowing the ink from adhering to any location that does not have an image, 
known as non-imaged area.
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One of the issues encountered during lithographic printing is known as toning (Figure 
10). This occurs when undesirable faint image appears on the non-image areas. 
The following practical example shows the proper use of statistics to compare the 
magnitude of the undesirable toning associated with two different inks, A and B.

Methodology

In the absence of historical data, randomness must be utilized for the t-test to be 
valid in comparing ink A and ink B. Systematic, random, multi-stage sampling 
were used since the production of printed papers is sequential. Randomized paired 
sampling for ink A and ink B is used to minimize the effect of unforeseen variables.
Ink A and ink B were simultaneously tested on four press units with the same 
dampening solution on actual press production for ve days and paired samples 
were collected. It must be noted that sampling of ink A and ink B are obviously 
sequential. Independence was induced by partitioning each press run into mutually  
exclusive intervals spanning 5000 printed copies. A random number generator 
determined when the four sets of samples were to be pulled from each interval. 
Samples from ink A and ink B were collected at the sample press-speed point. This 
minimizes the effect of time-dependent errors due to extraneous variables such as 
humidity, press temperature, and others. Often precision can be increased and bias 
be reduced by comparing matched pairs of samples while randomization ensures 
the validity of the test.

The ink density of plain paper in the non-imaged area was measured directly next 
to the sample spot. The toning value was de ned as the difference between blank 
imaged and adjacent non-imaged area. Any values larger than 0.02 optical density 
units were considered a defect.

Within the collected samples, four sheets, two with the ink A and two with the ink 
B, were selected and the optical densities were measured at eight different positions 
across the sheet, one in every other inking column, using handheld densitometers. 

Figure 10:  



2014 TAGA Proceedings 101

The optical densities of the paper at each position were then subtracted from the 
toned density to determine toning defect.

Results

As mentioned, the analysis should always begin by looking at the descriptive statistics. 
The histogram in (Figure 11) shows that ink A and ink B came from completely 
two different populations with no overlap. The same can be concluded from the 
boxplots in (Figure 12). Inferential statistics also conclude that the toned density of 
ink A is higher than the toned density of ink B with 100% certainty.

Miscellaneous Raw Data Validation and Manipulation

The data should follow a standard format with variables represented as columns 
and cases as rows in a spreadsheet. Only one data table should be placed in each 
sheet, preferably in a comma separated variable (.csv) format. It is very helpful if 
every column has only one header that starts at the rst row.

When approaching data for analysis, it is crucial that the data is validated or checked 
for accuracy. All data outside the main pattern (outliers) must be investigated. If the 
outliers are proven to be erroneous, they must be removed from the data. Outlier 
detection can be easily done by reviewing the datas scatter-plots.

Figure 11:  

Figure 13: 

Figure 12:  
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Quite often, variables that are measured with different scales need to be compared. 
This can be helpful, for example, if a manager attempts to evaluate the performance of 
multiple departments with varying outputs. Variables measured at different scales 
or units of measurement (Fahrenheit, Celsius, pounds, feet, gallons, etc.) should 
be standardized before any analysis is carried out to equalize the range and 
data variability (Figure 13). This is accomplished by subtracting the data mean and  
dividing by its standard deviation. To demonstrate this concept, start with two identical 
temperature data sets presented in the Fahrenheit and Celsius scales. The rst two  
columns show the raw data. The third and fourth columns represent the mean subtracted  
from the respective data point. It can still be seen that columns three and four appear 
different. Columns ve and six represent the mean subtracted from the respective 
data point then divided by its standard deviation. Columns ve and six appear identical.  
Subtracting the mean and dividing by the standard deviance, known as data  
standardizing, revealed the truth about the two data sets; it clearly demonstrated 
that they are identical. Data standardizing equalizes the data range and variability, 
a very important, simple, and powerful manipulation.

Conclusions

• The ultimate focus is future performance. A test by itself is useless and a waste 
of time if it does not correctly predict future performance. In the same way, an 
opinion poll is only successful if it predicts the future accurately. When applied 
to the printing world, the ability to predict future performance will allow for 
the best possible copies to leave the press-folder during every run.

• In any analysis, the sample averages are compared, not their individual members. 
The test analysis compares the difference in means and evaluates if this difference 
can be due to natural variability or due to the modi cation

• The average difference, or the treatment, is always compared to the natural 
variation or noise

• Simple analysis comparing the difference between the averages requires long 
sequence of relevant previous records or indepen- dence through random 
sampling [1]

• Independence should never be assumed, it requires hard work and planning

• Important testing precautions must be taken to ensure independence if no 
historical dataset is available

• Although the above mentioned plant experiment had relevant 210 consecutive 
batches of process A, ten new consecutive batches of process A were tested, 
immediately followed by ten consecutive batches of process B. This ensures 
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that both processes are tested under almost the same conditions and minimizes 
the effect of unforeseen lurking variables

• The historical data of the standard process were manipulated to be similar to 
the test data of two ten batches. Only then the historical data can be useful 
when comparing the standard and the new processes

• Validate and evaluate the health of the data before performing data analysis. 
Outliers can skew averages and estimated variation

• Data standardizing equalizes the data range and variability. It is a very important, 
simple, and powerful manipulation to allow proper comparison
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