
28 2015 TAGA Proceedings

Rainer Prosi

e or s or o a o a ion s an ar s

Abstract

 e o e ni ion or a as een aro n sin e e rn o e i enni
is the de facto standard for job tickets in a commercial printing environment. Since
the year 2000, XML – the base grammar of JDF and related tools and formats such
as XPath, XSLT Stylesheet transforms and XSD Schema have been greatly improved
and e panded. The soft are agents – Management information systems, ork o
control systems and device controls - typically encountered in Print Shops have also
matured.

This paper will analyze the advantages and disadvantages of JDF and show that
XJDF is a viable path forward that retains the advantages of JDF while improving
most of the disadvantages.

Background

JDF was initially designed at the turn of the millennium. Any technology will show
strengths and weaknesses in such a long timeframe and therefore CIP4 is evaluating
a format, currently referred to as XJDF which is a redesign of JDF that takes the
evolution of interface technology into account while retaining the valuable lessons
learned during the last 15 years. The major goal is an improved alignment of
XJDF with common XML technologies that will allow faster and more ef cient
implementation of JDF work ows by allowing the use of industry standard XML
tools.

stor ca s gn r u r nts

Current JDF is designed as a digital representation of the entire job ticket. The
assumption at the time was that JDF would be passed entirely from one device to
another. Thus all aspects and interrelations of processes in one job in the graphic
arts need to be encoded into a single JDF le. This design has one major drawback

CIP4 Technical f cer, eidelberger Druckmaschinen A

2015 TAGA Proceedings 29

The le contains data that may be irrelevant to the recipient. For instance a RIP
might receive JDF instructions that contain all necessary data for RIPping but
additionally a set of printing instructions dedicated to a printing press and further
postpress instructions for nishing devices. Advancements in work ow processors
and Management Information Systems (MIS) have made the requirement for a
complete description of the entire job in one le less relevant. enerally the entire
job is stored internally in some object model (which may but need not be JDF) and
only dedicated chunks of JDF are targeted to the recipient device. Nonetheless, Due
to requirements caused by de ning complete work ows in one le, reading a JDF

le is more comple and error-prone than reading a dedicated XJDF le.

o st nc o and

The crown jewels of JDF are the dictionaries of relevant parameters for processes
and product descriptions in the graphic arts that span prepress through press all
the way to nishing and delivery. These dictionaries must be retained. Luckily the
descriptions are independent of the details their syntactic encoding. It is possible to
move JDF forward to a simpler encoding such as the one proposed by XJDF that
retains the ideas and details but removes some of the undesired complexities. This
idea has been successfully executed in a similar manner when PDF was introduced.
PDF retains the overall graphics model of Postscript while changing the encoding
and removing undesired features from the language. CIP4 will even go one step
further and release twin versions of JDF and XJDF in parallel. CIP4 will thus
ensure that all details that are introduced in XJDF are introduced in the respective
twin version of JDF by editing the details in a common master speci cation. Thus
applications that prefer not to migrate to XJDF will still have a maintained JDF
speci cation that takes new developments in the graphic arts into account.

Automatic translation of JDF to and from XJDF is a major design goal of XJDF.
It should be easy to make existing JDF applications XJDF compliant by simply
converting XJDF to JDF and then using the application’s existing JDF import or
export capabilities. CIP4 will also make translation tools available that can convert
XJDF to JDF and vice versa.

Note that the XJDF speci cation will continue to be encoded in XML although not
even this is a hard requirement. For instance, CIP4 is also working on de ning a PDF
encoding of JDF Product intent for use within PDF T les that applies the same
idea – retain the dictionaries, regardless of the encoding – to allow PDF creators
to de ne aspects of the desired printed product.

Data Model – Implementation or Interface

JDF represents a complete job ticket including all process dependencies. As mentioned
in the introduction, these interdependencies are modeled in the object model of

30 2015 TAGA Proceedings

the implementation of a JDF enabled MIS or production control system. Therefore
these interdependencies only need to be transferred to device controllers that control
multiple lower level devices and also accept scheduling and routing information
from a higher level controller. Simple devices – the vast majority of devices such as
printing presses, platesetters or nishing devices, that receive instructions, execute
them and return the results – have no use for this additional information.

JDF also de nes methods for extracting partial information for distributed processing,
a technology referred to as Spawning and Merging . These implementation speci cs
are being removed from the XJDF speci cation and implementations are assumed
to use whatever proprietary means that they deem necessary to ensure consistency
of their internal data model.

D ode ierarc

JDF allows for very exible grouping of the process nodes in a hierarchical structure.
This is designed to group device processes that belong together in common process
groups. It unfortunately also makes reading JDF more dif cult for devices because
they need to traverse a tree of JDF nodes to nd the node or nodes that are targeted
at them. It also makes the use of XPath to identify data locations very complex
because the parent JDF node cannot be referred to by a simple XPath. XJDF
remedies this by allowing exactly one XJDF node that is exchanged between a
controller and the respective device.

Sets of Resources – Partitioning

Some resources in the graphic arts need to be speci ed as sets of resources. In order
to print a multi-page full color book you will need to describe the C, M, Y and K
separation of the front and back surface of every press sheet. Some properties, such
as the plate brand will be the same, but others like the image data or the scheduling
of the press runs will differ for various parts of the resource set. JDF describes this
with hierarchically nested resources of the same type that specify and can even
overwrite the respective data. This is concise and avoids redundant speci cation of
identical data but is also unfortunately very dif cult to either validate with an XML
schema or process with standard XML processors. Standard XML parsers have no
notion of inheritance and therefore JDF partitioning can only be processed with
dedicated JDF libraries. No reasonable XPaths exist for de ning inheritance.

The concept of resource sets obviously needs to be described in a job ticket. The
solution that was selected for XJDF is based on a at list of individual resources.
Each resource element has one or more Part elements that contain the context (In
our example: separation, side and sheet name). This avoids inheritance at the cost
of redundancy. Most JDF implementations actually speci ed all data redundantly
in the resource leaves so that we do not see this as a major drawback. Partitioned

2015 TAGA Proceedings 31

resources in XJDF can be readily addressed with XPaths and the structure of the
XML schema has been greatly simpli ed. hereas JDF requires four schema data
types for each resource type, XJDF requires only one.

D Resource inks

Some resource de nitions need to be reused in JDF. For instance sheets that are
produced by a press may subsequently be folded in a folder. On the other hand,
there is a clear difference between consumption and production of resources and
some parameters, like the amounts, may differ for the number of produced sheets
and the number of folded sheets due to waste etc. This leads to a situation where
the details of one physical object are distributed over 3 locations within the XML:
details for the producer are speci ed in the output ResourceLink of the producing
JDF node details for the consumer are speci ed in the input ResourceLink of the
consuming JDF node; and common data for both consumer and producer are stored
in a Resource that resides in a common ancestor node of both consumer and producer.
The XPaths for the three data locations are both complex and dependent on one
another so that XPath is not a viable technology for traversing JDF. Since XJDF is
dedicated to either the consumer or the producer, the dedicated information is all
de ned in one single location in the only XJDF node., which can be easily identi ed
with simple XPaths.

Redundant Descriptions

JDF has grown over time and has been developed by many experts from various
elds in the graphic arts. This has lead to many additions, deprecations and

modi cations which are not always consistent. One major part of the XJDF project
is to reduce the number of variations that can be used to describe similar concepts.
For instance, there are 4 variations to describe the imposition of pages on a sheet or
product, all of which have their respective raison d’être:

 LayoutIntent describes how pages are distributed on the nal consumer product
such as a booklet;

• LayoutPreparationParams describes the layout of pages as seen by a simple
digital printer;

• StrippingParams describes the Layout requirements from the point of view of
an MIS;

• Layout gives detailed speci cations so that a RIP can reliably place marks and
pages onto a sheet;

XJDF will unite LayoutPreparationParams, StrippingParams and Layout. This
may make some tasks that had dedicated solution slightly more dif cult,
but the experience with simple structures such as LayoutPreparationParams,
where each version brought just one more feature and nally made it almost

32 2015 TAGA Proceedings

equivalent to StrippingParams in functionality but still used different parameters.
The result is that we have an unnecessary divide between digital and conventional
layout description. XJDF will retain LayoutIntent because it describes the customer
view rather than the production view. Imposition description is one of many areas
where multiple methods to describe similar properties will be consolidated.

Note that consolidation and cleanup requirements are diametrically opposed to the
requirement that translation from JDF to XJDF and back should be straightforward
and ideally generic so that there are many discussions and individual decisions to
make regarding the ideal solution compared to a backwards compatible solution.

Device Capabilities and Plug & Play

JDF provides a mechanism to describe the range of JDF settings that a device can
accept. This essentially allows for instance a RIP to provide an XML capabilities

le that states that the RIP is a RIP and not a saddle stitcher. It also allows devices to
describe their processing speeds, limitations such as number of colors or media size
restrictions and the availability of modules such as duplex units. Unfortunately it
has not been widely implemented and therefore plug & play integration remains an
illusive goal for JDF enabled devices. Please note that the exibility and diversity
of devices in the graphic arts makes the task of enabling plug & play much more
dif cult than for instance for memory sticks.

XJDF no longer provides a CIP4 de ned syntax for de ning device capabilities. It
relies instead on XML schemas (XSD) to provide details of the supported subset
of XJDF. This removes some features and capabilities but allows use of standard
XML schema enabled tools which should allow for more rapid adoption. For
instance, there are tools that convert XML to schemas and can create sample XML

les for schemas. ith these standard tools, combined with the simpli ed design of
XJDF, the goal of plug & play for XJDF becomes achievable.

ICS Documents and Standards

ICS documents – Interoperability Conformance Speci cations – will still be
required. Since XJDF will cover the same scope of the graphic arts as JDF, it will
still be necessary to adhere to a given, prede ned subset of the speci cation. In
JDF, ICS documents assume a certain level of knowledge of JDF so that concepts
like ResourceLinks and the syntax for partitioning are implied. One goal of XJDF
is to enable more self-contained ICS documents. Since XJDF is designed to be
easily described using XPaths, it is possible to write ICS documents that clearly
de ne the requirements for a given XPath without assuming any more knowledge
than general XML. This allows ICSs or even normative standards bodies like ISO
to adopt parts of the XJDF speci cation without requiring the entire speci cation.

2015 TAGA Proceedings 33

Change Orders

One complaint about JDF is that it is hard to change details of a job once it has been
transferred to the device. Some of the dif culties are independent of JDF because
some changes have inherently complex implications. Changing the number of pages
or size of a print product typically invalidates the chosen production method and
you have to restart production planning from scratch. On the other hand, some tasks
like adding varnish should be a fairly simple. This is not the case in JDF, due to the
linking of process steps in one large le. In essence, you have to tell the producer of
the prior step to change the recipient of its output, add a new process step and then
tell the original recipient that it will receive a resource with different properties (in
our case it has been varnished) from a different producer.

XJDF allows job changes by making all attributes optional and thus allowing
incremental changes to existing processes. XJDF is designed with changes in mind.
One possible XJDF implementation is to create a skeleton job and then add the
process steps as multiple subsequent change orders.

Product Intent and Gang Jobs

JDF sees product intent and processing as two very similar ideas. The concept is
that a product description is very similar to the description of the process to produce
that product. Unfortunately, the hierarchy of products and processes allows only
one product to be the parent of a process and this assumption is incorrect in the
case of gang jobs, where multiple products are produced in one step to optimize
production ef ciency.

XJDF separates the concepts of product and process completely. Product descriptions
of all products produced by a process step can optionally be attached to the XJDF
process description. This structure additionally allows for specifying the number
of requested nal products, which is not always easily inferred from the requested
production amount due the combination of requirements for waste compensation
and N-Up production.

JM and Audits

The Job Messaging Format – JMF – will also be more closely aligned with XML
schema requirements. It will be renamed to XJMF and the message families will
be made type-safe rather than generic. Since JMF is already a fairly simple XML
format, no further structural changes are anticipated and XJMF will be very similar
to JMF except for the usual cleanup of deprecated message attributes and some
minor consolidation of message types.

34 2015 TAGA Proceedings

XJDF audit elements are very similar to their JDF counterparts except for the
following exceptions:

• All audits that were designed to track modi cations of JDF over time have
been removed. There is no such concept as an evolving JDF.

• Audits designed to track job status and resource usage have been modi ed to
be syntactically equivalent to their XJMF counterparts. An audit is thus simply
the consolidated sum of the snapshots that are represented by XJMF messages.

Conclusion

XJDF is a continuation of JDF that should simplify and enable more widespread
integration and automation in the graphic arts. It is well aligned with current
XML technologies and thus will enable vendors to build automated products and
even savvy printers with home-grown systems to automate their work ows more
ef ciently. This alone will accelerate adoption by providing the following unique
features:

• Reducing the number of methods to specify similar concepts will help to avoid
incompatible XJDF dialects.

• Reduced Implementation efforts for “out of the box” software and for custom
projects.

• Simpli ed integration and improved availability of off-the-shelf XML
debugging tools.

• Integrations will be more robust because the reduced exibility of the standard
will reduce surprises through unanticipated combinations of XJDF features.

• Integration will be more cost effective.
• JDF and XJDF will be maintained in parallel so that both JDF and XJDF will

be viable standards that can evolve based on requirements from the industry.
• Transition from JDF to XJDF is available and can be automated, thus allowing

mixed JDF/XJDF environments.
• It will be easier to get development teams up to speed with XJDF since

developers can easily apply their existing knowledge of XML to XJDF.
• The simpli ed structure will not necessarily make plug&play in an XJDF

environment easy, but it will certainly enable it.
• Bring XJDF into other areas of the graphic arts such as Web To Print,

multi-channel or multi-media publishing and digital nishing that have so far
shied away from the complexity of JDF.

• Enable use of XJDF for subcontracting and cross-company networks.
• Enable better integration with ERP systems by aligning with standard ERP

XML export tools, both for ERP print production integration and ERP print
procurement integration.

