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Abstract

CIEDE2000 is the most recent in a series of color difference formulas. It has 
become the standard color difference formula, despite two of its shortcomings. The 

rst shortcoming is that it does not ha e an associated color space. The second 
shortcoming is that it is a very complicated formula. This ongoing work addresses 
both of these issues. The goal is to provide a color space where color differences 
very similar to CIEDE2000 can be computed using the Euclidean distance formula, 
and where the calculations are signi cantly simpler.

This paper provides an alternative for the  value, introducing a much simpler 
computation that is a uite serviceable appro imation to E00 color differences in 
the  direction. This is called 00.

Background, (BC – before CIELAB)

In 1834, Ernst Weber devised the concept of “just noticeable difference”. He 
researched our abilities to sense the difference between two weights, and concluded 
that humans are able to detect a difference in weight, provided the difference was 
more than about 3% of the weight. He assumed this to be generally applicable to all 
our senses, but perhaps with a constant other than 3%. 

Gustav Fechner (1860) provided a mathematically equivalent form of Weber’s law, 
which stated that our perception of physical quantities is proportional to the 
logarithm of the stimulus. 

The Weber-Fechner law is generally applicable. The approximate validity of this 
is attested to by the fact that we measure sound intensity logarithmically (in 
decibels), the fact that each note on the piano keyboard is roughly 5.9% higher in 
pitch than the next one lower, and the fact that raises in salary are generally thought 
of in terms of percentages, rather than absolute amounts.
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The law is clearly an approximation, particularly at the lowest levels of perception. 
To take an extreme example, the perceptual difference between 100% and 3% 
re ectance is literally white to black, whereas that same ratio between 0.01% and 
0.001% re ectance is imperceptible.

This limiting factor is at least in part due to simple physics. A silicon photo detector 
has what is called “dark current”, where heat can spontaneously perform the same 
action as visible light even in the presence of no light. The eye exhibits this same 
phenomenon. A person does not perceive absolute black when he has adapted to an 
absolute dark room.

ens are is another issue that limits all imaging systems from seeing “pure black”. 
A small black area may register as 2% re ectance when surrounded by black, but 
may register as 5% when contaminated by scattered light from a white surround. 
The human eye is no different from any other imaging system. 

Note that most experiments in perception are carried out with the eye “adapted” 
to a gray surround, which is to say, when the center of the eld of view has been 
contaminated by a xed amount of scattered light.

If a logarithmic response makes sense, then it is reasonable to add an offset before 
the logarithm function to account for the human visual system equivalent of dark 
current and lens are. Delbouef did just this is 18 3, arriving at the following formula:

 D = 10 – 6.1723Log10(40.7h + 1)   (1)

Where h is relative lightness, on a scale from 0 to 1, and D is the perceptual lightness. 
The constants in this formula are determined so that D = 0 means perfect white and 
D = 10  means pure black, upside from how it normally quanti ed today.

Richter and Witt borrowed this formula for the development of the German 
standard Color Chart (DIN 6164) in 1953. They aligned the system with Munsell 
so that black became zero and white became 10.

In this case, V is the equivalent of the Munsell value, Y is the Y tristimulus value, 
and Yn is the normalizing factor.

Stanley Smith Stevens proposed an alternative to the Weber-Fechner law, also 
intended to approximate the relationship between stimulus and sensory perception. 
He rst developed this to model human vision in 1953, and published the general 
rule in 1957. His law says that perception is proportional to the stimulus raised to 
some power, generally a power less than 1.0.

(2)
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Numerous researchers into vision have applied this to approximate the lightness 
scale, including Priest et al., Moon and Spencer, Saunderson and Miner, Ladd and 
Pinney, Glasser, and Wyszecki.

Psycho-physical experiments with the gray scale from the Munsell Book of Color 
became the basis for another line of research that eventually led to CIELAB. The 
following table summarizes the various formulas that had been proposed prior to 
CIELAB (1976).

Notes:
The equations listed above may not be the same equation as was originally published. 
Where possible, the equations have been scaled so that 0    1.0. Some of the 
equations (Priest et al., Munsell et al., Foss et al., and Richter et al.) have been 
multiplied by ten so that the output ranges as of L ,  L  100. It is unclear how to 
scale various other equations (Saunderson et al., Ladd et al., Glasser, and Wyszecki) 
scaled so as to match, so the equations have not been adjusted.

Table 1 – Collection of formulas for linear lightness
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Wyszecki and Stiles (2000, p. 823) incorrectly report the Foss, Nickerson, and Judd 
formula as 0.25 + log10(Y). The original paper did not give the equation, just gave 
a table of 26 values for Y that are equally spaced. There are no numbers associated 
with each step, only “aa”, “bb”, etc. The equation above is my own derivation based 
on the table.

The Newhall, Nickerson, and Judd formula determines the Y value (re ectance) 
as a function of V, the perceptual quantity. Thus, a numerical solution is necessary. 
Moon and Spencer provided an approximation to this. Their original equation had 
a leading coef cient of 1.4. This was changed to 100 to give the proper scaling.

For more information, see Norwich 1997, Wyszecki and Stiles 2000 (p. 823), Hunt 
1991, (p. 155), Hunter, Chapter 9, Moon et al. 1943, and Saunderson et al., 1944, 
and CIE 2001.

CIELAB and beyond

A number of the formulas in the previous section follow the form of Stevens’ power 
law, giving a clear progression to CIELAB. The CIELAB formula for L  is a 
modi cation of Stevens’ power law:

Figure 1 – Comparison of various formulas for linearity

(3)
where
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Modi cations to CIELAB were made almost immediately. ne line of improvements 
began in 1976 by McLaren. Rather than devise a color space that outperformed the 
CIELAB formula, McLaren initiated the dubious practice of correcting the color 
differences determined from CIELAB based on the location in color space. 

In addition to McLaren’s formula, there have been at least six other McLaren-style 
correction formulas proposed: 

EJCP79 – McDonald (1979), 
ECMC – McDonald, Clark, and Rigg (1986), 
EBFD – Luo and Rigg (1987), 
E94 – CIE (1994), 
ELCD – Kim (1997), 
E00 – CIE (2000). 

The last one on the list, also known as CIEDE2000, has become an of cial standard, 
despite the fact that the of cial de nition of it comprises 19 equations (including 
the equations to compute L a b  from Y ), and includes 25 free parameters, 
most of which have no physical meaning. This level of complexity cannot be 
supported by the available data.

ne disadvantage of the McLaren-style color difference modi cations is that there 
is not an associated color space. Another basic problem with many of these formulas 
is that they are complicated formulas.

Another long list of researchers have developed color spaces:

Labmg –  Colli, Gremmo, and Moniga (1989)
ATD – Guth (1994)
DCI-95 – Rohner and Rich, 1995)
LLAB – Luo, Lo, and Kuo (1995)
No name given – Tremeau and Laget (1995)
CIECAM97 – CIE standard (1997)
RLAB – Fairchild (1998)
IPT – Ebner and Fairchild (1998)
L ’a ’b ’ – Thomsen (1999)
DIN99 – DIN standard 6176 (2000)
CIECAM02 – CIE standard (2002)
QTD – Granger (2008)
LEaEbE – Berns (2008)
LAB2000 – Lissner and Urban (2010) 
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Many of these are computations based on rst calculating L , a , and b , for 
example Labmg, DCI-95, LLAB, L ’a ’b ’, DIN 99, and LEaEbE. This adds an 
unnecessary complication to the formulas. If the CIELAB calculations don’t work 
well, why build on top of them, rather than replace them?

The sheer length of the list of proposed uniform color spaces is demonstration that 
the problem has yet to be adequately addressed. 

Principle of Parsimony

The number of free parameters that go into the formula is one measure of how 
complicated a formula is. As more parameters are incorporated, the danger of 
over tting data increases.

For the purposes of this paper, we will consider only the parameters that go into 
the calculation of our perception of lightness, which is to say, the equivalents to the 
L  scale. 

The L  equation includes three free parameters: one parameter de nes the point 
where the function f turns linear, and the function L  has the two additional 
parameters: 116 and 16. Thus, the L  equation has a parsimony level of three. 

(The equation for f(x) includes the numbers 24/116, 841/108, and 16/116. It could 
be argued that there are three free parameters. I would argue that the only free 
parameter was the decision to linearize the function from the point where the 
derivative would be continuous between that point and (0,0). Thus, I say that the 
function for L  has a parsimony level of three.)

The L  and L99 equations each add two parameters to those of L , so that the 
parsimony level of these are both ve.

Although ECMC, E94, and E00 are not uniform color spaces, we can still evaluate 
them in terms of the total number of parameters that are included in computing the 
lightness component of the color difference. All of these color difference equations 
include a scaling of L  by the value SL. 

For ECMC, the computation of SL involves three additional parameters beyond the 
three involved with L . The CMC equation for SL actually has four numbers: there 
are two parameters in the ratio (0.049075 and 0.01765), a cutoff point of L  = 16, 
and a value of 0.511 for SL for values less than 16. Since 0.511 is the value of SL 
where L  = 16, I don’t consider this an additional parameter, but rather a parameter 
derived from the others.
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The E94 equation is quite parsimonious, since the equation for the scaling of L  
is  SL = 1. I do not count this as an additional parameter. 

The calculation of SL for E00 includes three numbers. While there are three numbers 
in the scaling function SL, I would argue that the form of the equation itself further 
increases the parsimony, since it requires taking the ratio of to algebraic phrases 
which themselves are of difference forms. The numerator is a polynomial in L , 
and the denominator is the square root of a polynomial in L .

Stated in these terms, the goal of this project is to provide an equation for the 
lightness axis of a uniform color space, , which is more parsimonious than any of 
the equations in Table 2, and which provides a suitable approximation to changes 
in L   as computed in E00.

Experimental procedure

In the rst step, a numeric approximation to L00 was tabulated. A sequence of L  
values along the neutral axis was determined such that each step in the sequence 
is 1.0 E00 from the previous. The sequence starts with L  = 0.000, 1.734, 3.442, 
5.124, and so on. These values were used to create the L00 values, which will be 
as perceptually linear as E00. L  = 0 will correspond to L00 = 0, L  = 1.734 will 
correspond to L00 = 1.0, and so on. This sequence of L  values was translated to Y 
values. Figure 2 shows the relationship between Y (along the x axis) and L00 (along 
the y axis).

Table 2 – Parsimony of lightness component of various color difference formulas
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Note that L00 values go up to about 76, which is to say, according to E00 there 
are 76 levels of gray. This is about midway between the number of gray values in 
CIELAB (100) and the number in the title of the book (50).

Five different candidate functions were t to the function in Figure 2. Table 3 shows 
the functions, the RMS error of the t, and the parameters used. (For convenience, 
the scaling of Y  by Yn has been omitted in the equations.)

From this table, the offset logarithm function clearly provides the best t to the 
data. The fact that it has a level of parsimony of 2 (less than that of L ) is a big 
bonus. The fact that it is based on a formula proposed by Delbouef 142 years ago 
is also interesting.

Figure 3 shows a comparison between color difference values computed with E00 
(line) and those computed with L00 (dots).

Figure 2 – values of L00 as a function of Y tristimulus value

Table 3 – Results of various regressions
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Figure 4 shows another comparison between color differences as computed in L00 
and in E00. The y axis of this plot is the plot is the ratio of color difference values 
as computed by the two equations.

As can be seen, a color difference as computed by L00 is generally between 0.9 E00 
and 1.1 E00.

The blip below L  = 15 in Figure 4 deserves some discussion. At rst it may seem 
a bit of a shortcoming of the offset logarithm formula that there is an error of about 
29% around L  = 7. If the ultimate goal is to nd a formula that approximates E00, 
then this would indeed be a shortcoming.

Figure 3 – the log function (dots) as compared with the L00 function

Figure 4 – Comparison of the two formulas for color difference
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But is E00 reliable in this region? A bit of history might be helpful. The research 
that led to CIELAB was directed at nding a Stevens’ law equation that agreed 
well with Munsell data. But it was found that a straight power law could not 
approximate the data at the dark end. It was eventually discovered that shifting this 
formula downward (by subtracting 16 and then rescaling) brought the equation to 
within good agreement with the available data.

This unfortunately led to an anomaly at the very darkest end. At values of Y below 
0.00262, the modi ed Stevens law gave a negative result. This was not of huge 
practical concern. That value represents an optical density of 2.58D, which is rare 
in the real world, and perceptually very close to being pure black. A suggestion was 
made by Pauli that the curve below Y=0.008856 be changed to a straight linear 
curve. His suggestion became standardized into the CIELAB formula. 

It is extremely unlikely that this change from a cube-root and straight line response 
is physically manifested in the human visual system, and the use of two functions 
here is completely unsupported by data. So, CIELAB is suspect in areas near 
re ectance of 1%.

The switchover between linear and cube root-base functions occurs at L =8, which 
is where the offset logarithm function has the most dif culty agreeing with E00.

The most reasonable conclusion is that the failure of L00 to match the E00 
function below L =8 is not a failure of L00, but rather traces back to a de ciency 
of CIELAB.

The recommended formula

The formula arrived at through regression is quite simply

 L00 = 24.7 loge(20Y + 1)     (4)

Note that the scaling on CIELAB L  is somewhat arbitrary. Are there truly 100 
steps? Similarly, the scaling on E00 is arbitrary. Like many other color difference 
formulas, it was not scaled to match “just noticeable differences”. It was scaled so 
as to match Eab at L =50.

For simplicity, Equation 4 can be approximated with integers as shown below. This 
is the recommended formula.

 L00 = 25 loge(20Y +1)     (5)
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Extension to a*b*

This is a work-in-progress, since it only addresses one of the three axes of a color 
space. Variants of Equation 5 have been applied directly to the computation of 
analogs of a  and b , but currently has not shown much improvement in estimating 

E00 values.

Extension to a color appearance model

The computation of E00 includes numerous obscure parameters that have no 
relationship with anything that is directly measureable in the real world. It would be 
a fool’s errand to decide how to change the parameters to re ect differing viewing 
conditions. 

ne bene t of Equation 5, is that the parameters have a physical meaning. This 
opens the possibility that this equation can be used to extend L00 to other viewing 
conditions.

In the previous discussion of the Weber-Fechner law, it was pointed out that a purely 
logarithmic response to light is untenable, particularly at the dark end due to the 
fact that there will be some response (dark current and stray light) in the absence of 
true stimulus. This is re ected in the value “1” in Equation 5.

Note that “1” is not a free parameter. This value must be unity to ensure that Y=0 
corresponds to L00 = 0.

The value of 20 in Equation 5 can be interpreted as the signal to noise ratio of the 
visual system. This suggests that this number can be adjusted so as to account for 
differences in signal to noise ratio, which includes ambient light. It is well known 
that the intensity of the background can affect our ability to discern differences in 
lightness. Thus, this parameter could be used to model our perception with different 
background levels.

The value of 25 in Equation 5 similarly has an easily explained meaning. This 
relates directly to the number of steps in the lightness scale. It is known that the 
number of just noticeable differences depends on the level of illumination. The 
leading coef cient in Equation 5 could be adjusted so as to re ect this.  

Conclusions

The lightness axis of a new color space, L00, has been introduced. This new equation 
is simpler than the formula for the corresponding part of E00, and is even simpler 
than the formula for L  itself. Yet, it agrees to within 10% with E00 over most of 
the range, and disagrees in areas where there is little support for E00.
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Due to its simplicity, the parameters can be readily related to physical quantities 
so that this formula has promise for the underpinning of a color appearance model.

Further research will be devoted toward extending this formula to the computation 
of a00 and b00.
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