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Abstract

Inline color measurement systems measure color on the press while the web is 
moving, allowing press operators to measure color continuously throughout a run. 
The amount of data generated by inline color measurement systems exceeds offline 
color measurement systems and must be analyzed using different methods than used 
for analyzing offline color measurement data. The statistical process monitoring 
(SPM) methods for analyzing inline color measurement data must take into account 
the units of measure, amount of data, and organization of the data.

Color difference data is best suited for monitoring printed color in relation to 
tolerances set by the printer or print buyer, but is less suited for statistical analysis 
because it relates little to the physical aspects of the printed color. Plots of CIE 
ΔL*Δa*Δb* and CIE ΔL*ΔC*Δh are best suited for informing the printer about 
how printed color is different from a Standard L*a*b* target, but cannot be used 
to monitor color relative to ΔE tolerances. Spectral reflectance is a direct physical 
measurement of the printed process, and using Principle Components Analysis, can 
be decomposed into two or three orthonormal eigenvectors that can be monitored 
independently using SPM techniques.

Regardless of the color measurement units, the SPM method must be carefully 
considered. Commonly used control charts, such as I/MR and x̅/R, assume 
independence and normality the data, assumptions generally not valid for printing 
processes where features such as process drifting and process shifts are common, 
thus requiring the use of more advanced SPM methods.

1Advanced Vision Technology; 2Rochester Institute of Technology
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Introduction

A primary concern of printers is whether they are printing accurate color. Visual 
judgements are too unreliable to use in a standard test procedure. Color measurement 
technology and colorimetry provide a standardized, quantitative method for 
specifying and comparing colors. The base unit of measure for spectrophotometers 
is spectral reflectance. Any change in the color of the print is quantified by a change 
in reflectance. However, we interact with printed products in ways that cannot be 
described by direct physical measurements. The Commission Internationale de 
l’Eclairage (CIE) system of colorimetry, which includes the CIELAB (L*a*b*) 
color space and various color difference formulas, was developed to bridge the 
gap between physical measurements and perception and to estimate the visual 
experience of color (Berns, 2000, Chapter 2).

Individual color measurements are compared to a reference color measurement in 
most print process monitoring systems. Comparing measurements using L*a*b* 
units is not useful for describing whether the difference between two colors is 
perceivable. The color difference between a pair of L*a*b* values is called ΔE. 
A ΔE value of one is meant to represent the threshold of perceptibility. (Note, 
throughout this report, use of the notation ΔE represents a non-specific reference to 
color difference. Specific formulas in this article will be referred to using standard 
notation, such as ΔE00, the formula recommended by the ISO and CIE (CIE/ISO 
11664, 2014), and the formula used in this article. However, the concepts discussed 
in this article apply to all color difference formulas.)

Print buyers may specify a ΔE tolerance and printers may have an internal ΔE 
tolerance, but measuring ΔE is not trivial. Decisions must be made regarding the 
measurement procedure. In statistical process monitoring, acceptance sampling is a 
method used to accept or reject a product based on the outcome of each sample that 
is inspected. Acceptance sampling is appropriate when inspection costs are high 
(Borror, 2009, p. 194), such as the case where an offline color measurement system 
is used and the press must be stopped to pull samples.

The exact position and frequency of measurement in a run is partially determined 
by the measurement technology employed and the restraints of the printing process. 
Color measurement using a handheld spectrophotometer can only be performed 
when samples are pulled from the press. The most convenient time to pull samples 
during production on flexible packaging presses is usually at the end each roll. 
Color differences, then, can only be calculated from the set of samples pulled at 
the end of each roll. The printer must rely on this individual sample to represent 
the entire roll.
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Inline color measurement systems measure color on the press while the web is 
moving, allowing measurement of color within each roll. Using this data to monitor 
the printing process would be preferable to acceptance sampling. However, the 
data, regardless of quantity, must be analyzed. Operators might wonder how they 
conclusively decide whether a run, or an individual roll, is in control and within the 
tolerance limits.

Having a small number of handheld color measurements or a large number of inline 
color measurements does not change the fact that printers still need to know how 
consistently color is printed within the ΔE tolerance limits and whether color is 
changing over time. The operator must know what action to take when color is 
outside of the ΔE tolerance limits. Using an offline color measurement system, one 
out-of-tolerance measurement at the end of a roll might cause alarm, but does a 
single out-of-tolerance inline measurement cause alarm and warrant a response? The 
operator must be careful when taking action because acting on a drifting process, or 
otherwise unstable process, by adjusting the color may not solve the problem if the 
color continues to change. In addition, there is always a delay between the time an 
action is initiated and the time the effect of that action is detected on the print. Some 
changes, such as changing pressure, often take effect within seconds, while changes 
to the ink require minutes to fully manifest themselves as the reformulated ink is 
circulated through the inking system. This delay between action and effect means 
that operators may not see, in real-time, the intended effect of their changes, which 
makes the work of adjusting color particularly dependent on individual judgement 
and process knowledge.

Deciding on an appropriate action requires more information than can be provided 
by color difference data alone. Color difference says nothing about how colors 
differ, but only by how much they differ. Analyzing a process in terms of lightness, 
chroma, and hue can reveal in which color dimensions the process varies and, if 
outside the ΔE tolerance limits, which components should be adjusted.

Ensuring sufficient quality at the level of reflectance will result in sufficient quality 
at the visual level because colorimetry is derived from reflectance. If accurate color 
is established during make-ready then reflectance can be monitored to determine 
if there is a significant change in the process mean or variance. However, the 
many complex ways in which reflectance data can vary are not readily assessed 
in a ‘live’ production environment. Investigations into the root causes of process 
changes are often more expeditiously done in the colorimetric domain, where rule-
based monitoring of individual colorimetric parameters will often point to the more 
common process shifts.

If accurate color is never achieved during make-ready, or, if the operator is 
constantly trying to fine-tune the color during runtime, then variation in the process 
will be considered a result of special causes, such as operator intervention. In 
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such cases, the process will never be in control. A process is considered to be “in-
control” if it is “operating with only chance causes of variation” (Montgomery, 
2013, p. 189). Traditional methods for statistical process monitoring (SPM) assume 
that processes are in control with the aim of identifying at what point they deviate 
from that assumption. For processes that are known a priori to be out-of-control, 
such as when the operator is making adjustments, traditional SPM methods will not 
be useful.

The following sections discuss how techniques of SPM can be applied to inline 
color measurement data. As mentioned above, the three primary units of measure 
for color—reflectance, L*a*b*, and color difference—serve different purposes and 
require different treatments when employed in an SPM workflow due to their unique 
natures. Methods for analyzing color difference, L*a*b*, and spectral reflectance 
data are discussed in the sections that follow. In addition, suggestions for the use of 
color data in SPM workflows, described in Table 1, are proposed. The reasons for 
those suggestions are also discussed in detail in the following sections.

Monitoring a Process Using Color Difference

Color difference is the metric nearly all flexographic packaging printers rely upon to 
establish how well they meet their customers’ color reproduction expectations. Color 
measurements collected throughout a run for a specific color target are compared 
against the “Standard” color values for that target. Standard values, commonly 
specified in L*a*b* units, are provided by either the print buyer or established 
by the printer internally. Color difference data can also be used to determine how 
consistently a color is printed during a job. For example, color measurements 
collected throughout a job can be compared to the first L*a*b* measurement of the 
job to monitor change. Using the first measurement as a reference makes sense if it 
is assumed that accurate color was established during make-ready and is expected 
to be maintained.

Table 1. Suggestion for the use of color measurement data in statistical process monitoring.

Unit of Measure When to Use When Not to Use
Color Difference Monitoring production relative to

the tolerance limits set by the
printer or print buyer.

Assessing whether the process
is in statistical control.

L*a*b*/L*C*h Informing the operator about how
the process differs from the

Standard.

Assessing whether the process
is in statistical control.

Reflectance Assessing whether the process is
in statistical control.

Monitoring production relative
to the tolerance limits set by the

printer or print buyer.
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Color difference data from measurements made by an inline color measurement 
system for a cyan process color are plotted in Figure 1. The top plot of Figure 
1 shows the ΔE00 color differences between individual measurements and the 
standard L*a*b* values, ΔE00(S). The bottom plot of Figure 1 shows the ΔE00 color 
differences between individual measurements and the first L*a*b* values in the 
job, ΔE00(D). Upper and lower control limits, computed using a bootstrap method 
discussed later, are designated by the dashed black lines. Note that, in both of these 
plots, there is a dimension of time along the x-axis. Gaps in time did occur during 
the actual job process, but for simplicity, measurements are shown in their relative 
sequence. In this paper, it is assumed that a printer has established a minor tolerance 
limit at 1.5 ΔE00(S) and a major tolerance limit at 3.0 ΔE00(S). This means that any 
value between 1.5 and 3.0 ΔE00(S) is close to being out-of-tolerance and a ΔE00(S) 
above 3.0 is out-of-tolerance. Tolerance limits will vary from printer-to-printer.

SPM control charts are used to identify where a process is out-of-control, where it is 
out-of-tolerance, and to help diagnose why it may be out-of-control or out-of-tolerance. 
Among the most commonly used control charts, the data can either be averages of 
small, rational subgroups, or individual values. Rational subgroups are samples of 
measurements grouped together such that changes in the process are easily identified, 
while changes within each subgroup are minimized (Montgomery, 2013, p. 201).

Figure 1. Color difference data process data for a cyan process color. Top) Color 
difference from the standard, ΔE00(S), and Bottom) Color difference from the first 
measurement, ΔE00(D). The upper and lower control limits were calculated using a 
bootstrap method proposed by Phaladiganon, et al. (2009).

Figure 1. Color difference data process data for a cyan process color. Top) Color difference from the 
standard, ΔE00(S), and Bottom) Color difference from the first measurement, ΔE00(D). The upper and 

lower control limits were calculated using a bootstrap method proposed by Phaladiganon, et al. (2009).
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In offline color measurement workflows, a group of impressions from the end 
of every roll is collected and measured. The average for each group is plotted in 
an x̅/R chart. Inline color measurement systems measure individual impressions 
continuously throughout the run. There are no obvious ways to group inline color 
measurements because measurements are made continuously throughout the run. 
However, rational subgroups could be defined for an inline color measurement 
system as the average of some number of consecutive measurements. An advantage 
to using rational subgroups is that averages of individual values approximate a 
normal distribution, according to the central limit theorem, and an x̅/R could be 
used to monitor color differences of inline color measurements. Employing classical 
control charts, which assume data is normally distributed, for data that is not normally 
distributed can lead to a prevalence of false-alarms, incorrectly classifying points as 
out-of-control, or false-positives, incorrectly classifying points as in control.

While a detailed discussion on the pros and cons of using rational subgroups in 
analyzing inline color measurement data is not the main point of the article, it 
is certainly an interesting topic for future research. Individual values are used in 
figures throughout the remainder of this article, but the discussion has relevance 
whether individual values or rational subgroups are used.

Color difference data is well understood to be non-normally distributed (Nadal, 
2011; Seymour, 2016). In some cases, it is possible to run across a color difference 
process that appears to be normally distributed. The ΔE00(S) and ΔE00(D) data in 
Figure 1 were tested for normality using a test of kurtosis and skew (Jones, 2017). 
The ΔE00(S) data had a p-value of 0.380, which could be interpreted as indicating 
the ΔE00(S) data was normally distributed. In reality, it is the process noise that was 
normally distributed, not the color difference itself. The ΔE00(D) data had a p-value 
of <0.000, indicating the process noise was not normally distributed. These two 
tests for normality demonstrate that, even if the distribution of an underlying metric 
is not normally distributed, the process noise could be normally distributed.

As stated above, one of the primary motivations for process monitoring is to 
identify when the process is out-of-control and/or out-of-tolerance. The idea of a 
tolerance limit in a color difference control chart is clear: it’s an upper limit only 
and is predetermined by the printer or print buyer. Printers primarily care only if 
they are above of the major (red) ΔE tolerance limit. This is the difference between 
printing acceptable product and unacceptable product. However, a process could be 
out-of-control process without being out-of-tolerance. Identifying when a process 
is out-of-control can help the printer identify potential problems with a job before 
the process goes out-of-tolerance. Control limits for individual value ΔE charts 
must be established using methods that do not rely on normally distributed data, 
such as bootstrap methods (Nadal, 2011; Phaladiganon, 2011). Control limits were 
added to the color difference control charts in Figure 1 for the 99.9 percentile and 
0.1 percentile using the bootstrap method proposed by Phaladiganon et al. (2011)
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Ideally, control limits are first established with a representative in-control process. 
For example, one might consider the cyan ΔE00(S) process plot in the top of Figure 1 
to be in-control. Those control limits can be used to control the printing of that cyan 
color every time the job is run. If a printer is able to maintain consistent production 
across repeat jobs, then the bootstrap methods might be a useful tool for assessing 
whether the process is in control.

Despite the “well-behaved” cyan process in Figure 1, printers are more likely to see 
processes that are less well-behaved. The color difference process plots in Figure 
2 show two important common characteristics of out-of-control processes: drifting 
and a process shift.

The upper plot decreases steadily from 2.0 ΔE00(S) to 1.0 ΔE00(S) during the first 
half of the run, then increases steadily from 1.0 ΔE00(S) to 2.0 ΔE00(S) in the second 
half of the run. Most printers would not be alarmed by this process because the 
ΔE00(S) is less than the 3.0 ΔE00(S) tolerance, drift or no drift. However, a process 
that is in control means that the printed color is not changing over time. The plot 
of ΔE00(D) reveals not only a drifting process, but also a major shift in the process 
at measurement 330, where ΔE00(D) shifted from around 1.0 ΔE00(D) to around 2.5 
ΔE00(D). It should be emphasized that both the ΔE00(S) and ΔE00(D) processes shown in 
Figure 2 were calculated form the same measurement data, but were compared to 
difference reference points.

Figure 2. Color difference data process data for a green spot color. Top) Color 
difference from the standard, ΔE00(S), and Bottom) Color difference from the first 
measurement, ΔE00(D).

Figure 2. Color difference data process data for a green spot color. Top) Color difference from  
the standard, ΔE00(S), and Bottom) Color difference from the first measurement, ΔE00(D).
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Monitoring a Process Using L*a*b*/L*C*h

It is not surprising that the shift in color was present in the plot of ΔE00(D) but not 
present in the plot of ΔE00(S). The L*a*b* values of the individual Green Spot Color 
measurements are shown in Figure 3. The left plot shows the a*b* projection and 
the right plot shows the C*L* projection. The standard L*a*b* is the red point 
and the first measurement is the yellow point. Two clusters of measurement points 
were determined using K-means clustering. The green points correspond to the 
first 330 measurements before the shift occurred. The blue points correspond to 
points occurring after the shift. Observing the L*a*b* points closely reveals why 
the plot of color difference to the standard did not reveal a shift. The standard is 
roughly equidistance from the two clusters in the a*b* projection, and also roughly 

the same distance from the two clusters in the C*L* projection. While the first 
measurement was also roughly the same distance from each cluster in the a*b* 
projection, the second cluster is clearly farther from the first measurement than the 
second cluster. Numerically, the median color difference between Cluster 1 and 
the standard was 1.1 ΔE00(S) versus 1.4 ΔE00(S) between Cluster 2 and the standard, 
a difference of only 0.3 ΔE00(S). Yet, the median color difference between Cluster 1 
and the first measurement was 0.7 ΔE00(D) versus 2.5 ΔE00(D) for Cluster 2.

Process shifts can occur for a number of reasons. They are often observed when 
the process is interrupted for some period of time. Although most packaging 
presses have the ability to continue running during a splice, many printers Figure 
3. The L*a*b* values of individual Green spot color measurements. Left) the a*b* 
projection and, Right) the C*L* projection. The standard L*a*b* is the red point 

Figure 3. The L*a*b* values of individual Green spot color measurements. Left) the a*b* projection 
and, Right) the C*L* projection. The standard L*a*b* is the red point and the first measurement is 
the yellow point. Two clusters of measurement points were determined using K-means clustering. 

The green points correspond to the first 330 measurements before the shift occurred. The blue points 
correspond to points occurring after the shift.



320 2017 TAGA Proceedings

and the first measurement is the yellow point. Two clusters of measurement points 
were determined using K-means clustering. The green points correspond to the first 
330 measurements before the shift occurred. The blue points correspond to points 
occurring after the shift.

choose to stop the press before splicing on a new roll at the unwind or splicing to 
a new core at the rewind. Interruptions to a run occasionally occur mid-roll, for 
reasons such as maintenance, troubleshooting defects, or web-breaks. However, the 
printer must be aware that a shift in color could, and often does, occur after a restart.
Printers using an offline color measurement system may stop the press following 
every roll change to check color. It may be more cost effective to check color 
conformance for every roll than risk running the press with incorrect color. Use of 
an inline color measurement system allows the operator to monitor color throughout 
a roll and respond to changes in the process in real time.

Of the three commonly used types of color data—reflectance, L*a*b*/L*C*h, and 
ΔE—the most intuitive for monitoring color is L*a*b*/L*C*h. It is the relative 
difference of those value from the standard, ΔL*Δa*Δb* or ΔL*ΔC*ΔH (ΔH is 
calculated using Equation 1), that can best guide an operator in the control of 
color. For example, if the printed color is lighter than the reference (a large ΔL* 
value), that informs one action, perhaps adjusting ink film thickness. However, 
if the printed color is a different hue (a large Δh value), then the ink may need to 
be reformulated. These dimensions are easily described using common language, 
translated to phrases such as “too red” or “too light.”

Unfortunately, ΔH is not an intuitive metric to monitor because the values cannot be 
negative. The operator cannot know from the ΔH data whether the hue error is due 
to a larger or smaller hue angle. Plotting Δh (hue angle in degrees) is not intuitive 
either because the units, degrees, are different from the unit-less ΔL* and ΔC*. A 
possible solution, shown in Figure 4 as ΔH′, is to use a representative sign for ΔH 
based on the sign of the Δh. If Δh is negative, ΔH′ is given a negative sign, and if Δh 
is positive, ΔH′ is given a positive sign. The operator is informed of both how the 
hue is different and of its contribution to color difference relative to lightness and 
chroma. The formula for calculating ΔH′ is shown in Equation 2.

The plots in Error! Reference source not found. show ΔL*, ΔC*, and ΔH′ process 
plots compared to the standard for the green spot color. The raw data is shown in 
red and the black line represents averages across each roll. Roll changes are marked 
by dotted black lines. All three axes are scaled equally. The ΔH′ suggests that, while 
there is a hue difference, hue is stable throughout the process relative to lightness 

Eq. 1

Eq. 2
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and chroma. Chroma is decreasing slightly and lightness appears to be approaching 
the standard value, as seen in the plot of color difference versus the standard in 
Figure 2. A process shift is observed after the transition from the third roll to the 
fourth roll.

Monitoring a Process Using Spectral Reflectance

Reflectance measurements of the same color target on different impressions often 
have the same basic shape. While the high dimensionality of reflectance vectors 
can make them difficult to monitor in their original form, a set of reflectance 
measurements can be decomposed into a small number of orthonormal eigenvectors 
using Principle Components Analysis (PCA) (Johnson and Wichern, 2007, Chapter 
8). The shape of the first eigenvector describes how the set of reflectance curves vary 
the most. The shape of the second eigenvector describes how the set of reflectance 
curves vary the second most, and so forth. In most cases, a linear combination of 
two to three eigenvectors describes >95% of the variability in a given job. The 
dimensionality of reflectance can thus be reduced from 31 channels to 2 channels.
In PCA, the mean is subtracted from the data set before analysis is performed. 
The covariance of the mean-subtracted data is calculated and eigenvectors are 
calculated for the covariance matrix. A set of reflectances, M, can be Figure 4. 
ΔL*, ΔC*, and ΔH′ process plots compared to the standard for the green spot 

Figure 4. ΔL*, ΔC*, and ΔH′ process plots compared to the standard for the green spot color.
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color. reconstructed from a linear combination of the set of eigenvectors, b, and 
the mean reflectance R̅, shown in Equation 3, where w are the weights of each 

eigenvector used in the reconstruction. There are 31 possible eigenvectors for a set 
of reflectances. However, as mentioned above, most of variability can be explained 
by two or three eigenvectors. Therefore, while a perfect reflectance match to any 
reflectance vector in the set can be calculated using a linear combination of all 31 
eigenvectors, plus the mean, a reasonable reflectance match can be calculated using 
a linear combination of two to three eigenvectors. The remaining eigenvectors 
describe noise.

The set of eigenvectors and the mean will be constant for a given measurement 
target in a job. The reflectances for that given measurement are mapped to a 
new space defined by the eigenvectors. The mapped values are called principal 
component scores. The scores for each reflectance curve, i, are calculated using 
Equation 4, where si is the score for measurement i.

PCA was used to reduce the dimensionality of the reflectance data for the green 
spot color. The spectral reflectances are shown in Figure 5 (left) as a function 
of wavelength. It is difficult to glean much information about the process from 
reflectance as a function of wavelength because the curves look similar and don’t 
represent changes in time. The plot of reflectance as a function of measurement 
sequences does show the shift in the mean at measurement 330, but the change 
is so small that it is hard to determine visually whether it is significant or not. 
Furthermore, there are many wavelengths that do not reflect the process shift 
because the signal is so low.

Figure 5. Spectral reflectances for the green spot color, Left) as a function of wavelength and, Right) 
as a function of measurement sequence.

Eq. 3

Eq. 4
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It was determined that two principle components were sufficient to describe 99.2% 
of the variability of reflectance throughout the job. The first PC described 98.2% 
of the variability and the second PC described 1% of the variability. The two 
eigenvectors, along with the mean reflectance, are show in Figure 5 (right).

Unfortunately, control limits are not appropriate for monitoring the quality of the 
Score 1 and Score 2 because Score 1 is not normally distributed. The shift in the 
process at measurement 330 is clearly visible in the Individual plot of Score 1 
in Figure 6. The p-value of a normality test for Score 1 is < 0.000, meaning the 
assumption of normality is rejected, while the p-value of a normality test for Score 
2 is 0.216, indicating the data is normally distributed.

One important advantage of inline color measurement is the ability to monitor color 
within a roll. Much has been said about how process shifts commonly occur at 
roll changes and at other interruptions to the process. In these cases, the process 
is out-of-control and the operator can choose to make an adjustment to the color 

Figure 6. I/MR charts for the green spot color PC scores.

Figure 7. Roll averages and I/MR charts for the roll-normalized green spot color PC scores.
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if they feel it necessary, usually if the shift results in the color moving outside the 
ΔE00(S) tolerance limits. However, it is also useful to know whether the process 
for individual rolls is in control. Rolls can run anywhere from 10 minutes to 40 
minutes, and many measurements can be collected for individual rolls. A process 
behaving normally should have PC scores that vary randomly, at least within an 
individual roll. Assuming normal production within individual rolls, the PC scores 
can be analyzed relative to the mean scores of individual rolls. I/MR charts of 
scores with the mean scores of each roll subtracted are shown in Figure 7. The 
individual values of the roll-normalized scores were tested for normality. The 
resulting normality test p-values, 0.480 and 0.121, respective to roll-normalized 
Scores 1 and 2, suggest that the assumption of normality. The upper control limit 
for the MR chart was calculated using Equation 5.

where MR is the average of the moving range, and the upper and lower control 
limits for the I chart were calculated using Equation 6.

I and MR outliers are indicated by red dots in Figure 7.

It is not always the case, however, that roll-normalizing scores results in normally 
distributed data. Process drifts or other non-random effects that occur within 
each roll will lead to cases in which the data might be autocorrelated, meaning 
measurements in the process are dependent upon previous measurements. 
Autocorrelation is discussed at length in Snoussi et al. (2005) and Snoussi (2011) 
and presence of autocorrelation in inline color measurement data will be a topic for 
future research.

While it may be inappropriate to use non-normal data to calculate control limits, a 
different, previously run job could be used to establish the control limits. In fact, 
it is common practice and recommended to establish control limits using an in-
control data set, then apply those control limits to future jobs. If ink is formulated 
consistently, the reflectance curves are similarly shaped for all repeated jobs of a 
color, then eigenvectors can be calculated to describe reflectance variation across 
multiple jobs.

Concluding Remarks

The ultimate goal of inline color measurement data is to help streamline the printing 
process, providing operators with a tool to determine when the process is out of 
control and decide how it should be corrected. Colorimetric charts are useful for 
visual display while reflectance-based changes, whether using PCA or not, have 
the greatest utility for quality experts and for processing data behind the scenes. 
The major piece not discussed in this article is specifically how an operator should 

Eq. 5

Eq. 6
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respond to various clues provided by control charts. ΔL*ΔC*Δh plots can provide 
some clue as to whether there is a problem with the ink or some other component 
on the press, but the data itself is no substitute for the operator’s experience and 
color data only goes so far. Inline color data is best used in conjunction with data 
from an inline inspection system and a seasoned pair of eyes to ensure the printed 
product is of optimal quality.

The ability of an inline color measurement system to collect color measurements 
within a roll without stopping the press is an important advantage to these systems 
over offline color measurement systems. In addition, many printers are required 
to supply print quality data, including color measurements, to print buyers, via 
print quality reporting applications (Gamm, 2016). Viewing the data remotely, 
either during a job or after the job is complete will give print buyers a different 
perspective on the process than printers. Printers are trying to actively control the 
process and ensure consistent quality while print buyers do not have any direct 
control, but may be viewing data from across many presses and suppliers. Careful 
statistical assessment is needed to assure that the analyses chosen for one purpose 
are truly suited for the other. The differences between analytical methods employed 
on site and remotely may be completely different, and would be an interesting topic 
for further research.

While this paper focused on a few commonly-used analytical methods, it was 
acknowledged that they may not be appropriate for all data sets. A useful guide for 
selecting process monitoring methods is provided in Marques et al. (2015) and is a 
starting point from which to explore additional methods for the statistical analysis 
inline color measurement data.
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