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Abstract

he color d erence  h s lon  een used s  me r c or cce nce oler nces  
Indeed, much of the impetus for developing better color difference formulas has 
been this very practical industrial problem. Tolerances objectively quantify the 
customer s requirements, in this case, for color delity. s such, a metric that 
quanti es our perception of color difference for e ample, 00) is appropriate for 
customer tolerances.

It should come as no surprise that practitioners of statistical process control (SPC) 
have generally used color difference as a key metric whereby they benchmark their 
process. The cornerstone of SPC is to quantify the normal variation of the process to  
identify when the process starts to behave aberrantly. But, for reasons that are almost 
universally under appreciated, the  color difference is inappropriate for SPC. 

The rst part of the paper reviews de ciencies of the  color difference for SPC. 

The second part of the paper introduces  as a means to quantify a 
cloud of data points in color space. This is described graphically as tting a three
dimensional ellipsoid to a set of data points. athematically, ellipsi cation is a 
generalization of the standard deviation to multiple dimensions, in this case, three.

The concept of the Z score is generalized to a three-dimensional metric, which is 
called Zc (“Z score for color”) in the fourth part of this paper. If the original data is 
“three-dimensionally normal”, then the Zc score will be chi distributed with three 
degrees of freedom.

Finally, these concepts are demonstrated on real world color data. It is seen that 
data sets from processes that are in good control will closely follow the theoretical 
distribution, and conversely, data sets from processes that are not in good control 
will not closely follow the theoretical distribution.

John the Math Guy, LLC
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Further related methods are described including a metric to assess whether a process 
is in control, and metric to compare the variation in color of one process to another, 
and a way to estimate percentiles of color difference data. 

To avoid any confusion, this section de nes the closely related terms involved with 
making use of measurements of a manufacturing process.

There are two basic purposes for making measurements of the nal product of an 
industrial process: quality assurance (QA) and process control (PC). While these 
two applications of measured data are closely related and often overlapping, the 
focus is different. The purpose of QA is to verify that the nal product meets certain 
tolerances, generally as dictated by the customer. The purpose of PC is to improve 
the process by which a product is made.

The  color difference was developed speci cally to assess tolerances which are 
correlated with our perception of the difference between two colors. CIEDE2000 
( E00) is the most recent development of this tool. As such, E00 is considered the 
best tool we have today to assess whether a color is in conformance with customer 
tolerances. 

The purpose of this paper is not to challenge the use of any of the color difference 
formulas for QA purposes. It is rst to demonstrate that color difference formulas 
are ineffective for SPC, and then to propose an effective alternative.

There are many aspects to process control. It may involve the active adjustment of 
production equipment to better produce a desired result. When applied to the color 
produced on a printing press, this involves making color measurements during the 
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press run and adjusting, for example, the opening of ink keys, the pressure between 
rollers, or the viscosity of the ink. These activities are the innermost loop of process 
control.

Process control also includes indirect control, which is control of parameters 
outside the actual manufacturing machinery. When applied to the color produced 
on a printing press, this refers to the formulation of ink, and often to the adjustment 
of digital image les through plate curves and ICC pro ling to create printing plates 
that closer meet the color speci cations. These activities are the next larger loop of 
process control.

SPC is a set of techniques that can be used to quantify the behavior of a process. 
As such, it can be employed in the innermost loop of process control to identify 
when the process is operating outside of its normal behavior. It can be used in the 
second larger loop of process control to identify production runs that are aberrant, 
or to compare one run against another. SPC can also be used at the outermost loop 
of process control as a technique for process improvement. 

The graph below is a scatter plot of (a*, b*) values of a pink spot color during 
a production run from Company R. The green dots represent measurements that 
would be considered normal process variation. The red dots represent abnormal 
measurements. The red X is the target (a*, b*) value.

Figure 2 – 
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Figure  is a different view of that same data. This is a runtime plot of the E00 color 
difference data. The actual tolerance for this production run is unknown, but the red 
dashed line at a color difference of .0 E00 is a plausible tolerance.

At rst glance, it would appear that this press run was woefully out of tolerance. 
Whether this is actually the case depends on precisely how the contract between 
printer and print buyer is worded. The contract may specify that all the measurements 
be within the speci ed tolerance. This is not recommended

CGATS Technical Report 016 provides a somewhat different interpretation of how 
a tolerance should be interpreted:

From this interpretation of what a tolerance means, the press run looks much closer 
to being in conformance. Whether 700 of the 1000 data points are below this line 
or not is a tough call, however.

This leads to one conclusion. A runtime chart of E is useful for QA when the 
tolerance is an absolute tolerance, which is not recommended for printing. A 
runtime chart of E is not useful for assessing a tolerance when the number of 
measurements that meet the tolerance is a percentile. Therefore, I do not recommend 
runtime charts of color difference for purposes of QA.

Now let’s look at the same runtime chart (Figure 4) from the standpoint of SPC. 
In standard practice for SPC is to set and upper and a lower control limit based 
on the mean and standard deviation of measured data. (Those statistics may be 
determined from the data set that you are working with, or they may be determined 

Figure 3 – 
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from previous runs.) The control limits are generally the mean value, plus or minus 
three times the standard deviation.

When a measurement is inside the control limits, it is assumed that the process 
is running normally. When it steps outside of those control limits, it is likely that 
something in the process has changed. A single outlier may or may not be cause for 
concern, but if several occur close together, then it would be a good idea to check 
the machine.

A lower control limit for color difference data is not useful. If the color difference 
between the target color and the measured color is below, for example, 0.1 E, 
this is cause for jubilation, not concern  So, Figure 4 below shows only the upper 
control limit, which in this case was about .2 E00.

The runtime chart in Figure 4 tells a story of the press run. There is one clear outlier 
between sample 200 and 250, and there are four borderline outliers between 650 
and 750. Aside from that one point – which can readily be passed off as a misread 
or a hickey in the print – this run looks stable.
But this story is not particularly accurate. Figure 5 below is another (a*, b*) plot of 
this data, this time with the 5.2 E00 ovoid upper limit shown in red. There are at 
least seven data points that are well outside of the cluster of data points. Note that 
this is one projection of the points. Additional outliers may be obvious from other 
directions.

Figure 4 – 
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The fundamental premise of a runtime chart is that you use statistics (in this case, 
mean and standard deviation) to characterize your process. One would hope that the 
characterization is “tight”, that is, unnatural changes in the characteristic that you 
wish to measure are outside of the bounds of the statistical characterization. 

The parameter E cannot be considered tight when used to assess the process 
variation of color. In the hypothetical graph shown in Figure 6, the color difference 
can be described as “the color difference is between 1.5 and .0 E”, but it is clear 
that there are a lot of colors that are outside the normal variation of the process, but 
yet t this simple description.

Figure 5 –  values

Figure 6 – 
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Gamm and Silvestrini [2015] recognized the issue described here and discussed a 
simple variant on the color difference. Rather than determine the color difference 
between the measured samples and the target color, they investigated using the rst 
sample of the production run as the target color. In this way, the E tolerance ovoid 
is shifted so that it is centered on the data.

This is a slight movement away from pure QA. In some cases, an OK sheet at the 
start of the run de nes the target color, but in general, the target color is speci ed 
before the press run.

This approach is an improvement, and it is certainly easy to implement. On the 
downside, one must be careful not to mistake this for a runtime chart of conformance 
to a target color. But a more important downside is that the shape and orientation 
of the E00 ovoids is based on a model of the human visual system, and not on the 
particular characteristics of the dataset being analyzed. Hence the characterization 
of the color data is not as tight as it could be. The two images below demonstrate 
the  sigma E00 ovoids when the target color is closer to the centroid of the data 
points.

Note: The right-hand graph in Figure 7 is a plot with C* (chroma) on the horizontal 
axis.

Thus, there is room for improvement in the statistical characterization of color data.

Motivation

The standard deviation and mean can be thought of as a way to compress a data 
set down to two parameters. A line segment from the mean minus three standard 
deviation units to the mean plus three standard deviation units represents the 
expected range of the underlying data. This is a one-dimensional object.

Figure 7 – 
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Color is three-dimensional: L*, a*, and b*, so in order to do SPC of color, we need 
a generalization of the standard deviation to three dimensions. As a rst guess, we 
might consider using the mean and standard deviations of L*, of a*, and of b*. 
Thus, we get three means which together represent the centroid of the data, and 
three standard deviations, which together represent the range of the data in each of 
the three directions.

Figure 8 shows some hypothetical two-dimensional data, with means of 36 and 28, 
and with standard deviations of 6.5 and 2.4. The dotted lines show the plus/minus 
three sigma line segments for each of the two axes. The orange ellipse is the ellipse 
that has these two line segments as its axes. This is a reasonable characterization of 
the data for the purposes of SPC.

Figure 9 shows that same data, only rotated about the centroid by -45°. The mean 
is the same as the data in Figure 8, but the standard deviations have changed. The 
standard deviation in the horizontal direction has gone down from 6.8 to 5.0, and 
in the vertical direction, the standard deviation increased from 2.4 to 5.3. The green 
ellipse is the ellipse determined from these new standard deviations. 

The orange ellipse is the ellipse from Figure 8, rotated by -45° along with the data. 
It is readily seen that the orange ellipse is a much better characterization of the data. 
That’s the ellipse that we want for SPC characterization.

Figure 8 – 
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The orange ellipse (in this two-dimensional example) is de ned by ve parameters: 
two parameters de ne the center of the ellipse, two parameters de ne the major and 
minor axes of the ellipse, and a fth parameter de nes the rotation angle where the 
two axes are uncorrelated.

In three dimensions, we have nine parameters to de ne an ellipsoid. There are three 
parameters which de ne the centroid. There are three parameters which de ne the 
major, medial, and minor axes of the ellipsoid. Two parameters de ne the direction 
that the major axis points. These could be, for example, a latitude and longitude. 
Finally, there is another angle which de nes the rotation of the ellipsoid about the 
major axis. 

Ellipsi cation is a word coined by this author. While technically it means 

This process has been discussed elsewhere [Fotak, McDonald, Volz, Wyble and 
Laird,].

Figure 9 – 
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Zc score

The Z score is one of the basic statistical tests that is introduced in Stats 101. It 
is used to ferret out suspicious data points in a data set. The mean and standard 
deviation of the data set are rst determined. Next, each data point is normalized 
by subtracting the mean, and then dividing by the standard deviation. The resulting 
numbers are unit-less, and represent the number of standard deviation units that a 
data point is away from the mean. If a Z score for any data point is outside of the 
range of -3 to +3, then the point is suspicious. If the assumption is made that the 
underlying distribution is normal, then the probability of such a value is one in 370. 
If Z is less than -4 or greater than +4, then it is quite likely to be an outlier. This 
corresponds to a probability of one in about 16,000.

Mathematically, this is the same test as is used in traditional SPC, except that 
the upper and lower limits for SPC are generally expressed in native units (non-
normalized).

Figure 10 illustrates Zc, the three-dimensional generalization of the Z score. Zc 
stands for Z score for color. All of the points within the ellipsoid labelled “Zc = 1” 
have Zc values less than 1, etc.

The Zc value for a data point is determined by rst ellipsifying the whole data set to 
determine the nine parameters of the ellipsoid that ts the data. With this knowledge, 
the centroid is subtracted from the data point so that the data is centered on the 
origin. Next, the appropriate rotations are applied so that the coordinates of the data 

Figure 10 – 
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point are based on the axes of the ellipsoid. Finally, the individual coordinates of 
the transformed data point are divided through by the length of the corresponding 
axes, which is to say, by dividing by the corresponding standard deviation. 

Described in different words, the L*a*b* data points are transformed by the 
transform that changes the ellipsoid into a unit sphere.

The Zc value for that data point is the distance from the origin for that transformed 
data point.

This is a generalization of the computation of the Z score for one-dimensional data.

Under the hypothesis that the variation of L*a*b* is trivariate normal, then Zc 
will have a chi distribution with three degrees of freedom. The generality of this 
hypothesis will be tested against a large data set in a subsequent section of this 
paper.

The traditional cutoff levels for Z are similar for Zc. The short table below compares 
the probabilities of common two-sided Z tests with the equivalent Zc tests.

Figure 11 is another look at the L*a*b* data that created the runtime chart in Figure 
4. The new runtime chart looks at Zc instead of E00.

Probability
90%
95%
99%

99.73%

Z value
1.645
1.960
2.576
3.000

Zc value
2.501
2.795
3.368
3.762

Figure 11 – 
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Recalling Figure 4, there was one outlier identi ed near sample 210. This could easily 
be passed off by the operator as a transient anomaly. Perhaps the spectrophotometer 
was not positioned squarely on the patch? Perhaps there was a small defect on the 
paper within that small patch? The Zc chart clearly shows that this was not a one-
off anomaly, since there were six measurements in a cluster that were outside the 
upper limit of 3.76 for Zc. Five of these six outliers were missed by the E runtime 
chart simply because the direction of color variation was toward the target L*a*b*. 

The Zc runtime chart identi es three other outliers which appear to be transient 
outliers. (I say appear to be since this data is sampled from a run. It may be that 
these were one-off, or it may be that these represented a string of outliers that was 
too short to show up in multiple samples.) 

Note that the Zc chart does not show any outliers in the region between sample 650 
and 750, as did the E runtime chart. Thus, not only did the E runtime chart fail to 
show true outliers, it identi ed non-outlying points as outliers.

Earlier, it was stated that a E runtime chart is not useful for gauging whether a 
process is meeting a conformance criterion that is of the form “the nth percentile of 
color difference must be below  E”. We can add to that, the statement that a E 
runtime chart is not recommended for SPC. 

Figure 12 shows an example of a runtime chart that highlights a process that is not 
in control. This is data from another anonymous company which will be referred 
to as Company B. This company is a exographic printer which regularly prints 
CM K on lms. They collect color measurements of CM K solids and halftones 
for each of multiple press runs each day. Figure 12 is a Zc runtime chart of all the 
C50 patches printed over the course of a year. 

The dashed red line is at Zc = 3.762. One would expect, if the underlying distribution 
were trivariate normal, that about 1 in every 370 Zc values would be above this line. 
Since there are roughly 3,700 measurements represented in the chart, there should 
be about 10 outliers. Clearly there are considerably more than this. Furthermore, 
there are clusters of outliers, indicating that at least twice (indicated by the ellipses) 
the process was behaving outside its normal behavior for days at a time.
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An a*b* scatterplot of this data is shown in Figure 13. It is clear from this view that 
there are a large number of outliers in this data set.

2

Hotelling introduced a statistic in 1931 which was an extension of Student’s t statistic 
to multi-dimensional data. It is called Hotelling’s T2 statistic. Hotelling used this, 
for example, for process control of the alignment of bombsights [Hotelling 1947]. 
Hotelling’s T2 has been used on color data [Brown et al., Jackson, Fairchild, Nadal 
et al., ASTM 2214]. 

Figure 12 – Zc runtime chart of C50 measurements for Company B

Figure 13 – 
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Zc and T2 are closely related, with the key difference being that Zc is in linear 
units, and T2 is in squared units. From the standpoint of statistical inference tests, 
the difference is immaterial. The critical values are determined separately for each, 
so that any statistical conclusion made with Zc will be the same if made with T2.

Zc has a simple intuitive explanation: just like the one-dimensional Z score, Zc 
is the number of standard deviation units that the data point is from the mean. 
Another conceptual advantage is shown by considering a plot like the ellipsoid plot 
in Figure 10, with concentric ellipses for Zc = 1, 2, 3, 4. The same plot for T2 would 
not have equal gradations in ellipse size.

The runtime chart in Figure 11 illustrates a clear practical advantage for Zc. In this 
plot, the outlier forced a scaling on the plot up to Zc = 17. Because of this scaling, 
the data below the critical value of Zc = 3.75 is compressed to the lower 20% of the 
chart. If the same plot were to be made of T2, the plot would be scaled to around 
T2 = 300, with the majority of the data compressed into the lower 5% of the chart. 

Travel

There is an interesting feature in the E plot in Figure 4 (Company R pink spot color 
data) that deserves a closer look. Figure 4 is repeated below with a cyclical pattern 
drawn in blue. It appears that there is a slowly varying change in the process. This 
variation is not apparent in the corresponding Zc runtime plot (Figure 11).

The rst question is why this trend in E is apparent. 

Since this anonymous data did not come with much in the way of explanation, 
the type of press this is unknown, the underlying cause is unknown. Note that the 
variation shown in Figures 2, 5, and 7 is generally toward and away from the white 
point, which is to say, along the ink trajectory. This is consistent with a change in 

Figure 13 – 
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ink strength, which could be the result of changes in pigmentation level of the ink 
or in ink transfer.

Note also that the target color (from which E is computed) is close to the ink 
trajectory, well on the weak end of almost all the data points. Thus, changes in ink 
strength will directly translate to E values.

This will not always be the case. If the target color were to be off to the side of the 
ink trajectory (perhaps a slightly different hue) then the change with ink strength 
will be less signi cant. If the data is centered on the target color, then (since E is 
always positive) the relationship between ink strength and E will be complicated 
by the fact that ink strength below the target strength will look much like ink 
strength above the target.

Zc exhibits this same behavior, since neither Zc or E can distinguish the direction 
of the color change. I introduce a new SPC parameter, which I call 
travel, shortened to just travel, to serve as a diagnostic. Travel is de ned as the 
position of a color value along the major axis of the ellipsoid. When a point is at 
the centroid, travel is zero. As it moves toward one end of the ellipsoid or the other, 
travel gets either larger or smaller (larger in magnitude toward the negative end). If 
the original data is 3D normal, then travel is normally distributed with zero mean 
and standard deviation of one.

Those familiar with principal component analysis may recognize this as a principal 
component score [Gamm, Jackson 2003].

Figure 14 – 
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Figure 15 shows a runtime chart of travel for the pink spot color data set from 
Company R, which appears in Figure 14 and others. This clearly shows the same 
cyclical trend that was seen in the E runtime chart of the same data.

Unlike runtime charts of E, travel will always show variation in the predominant 
direction of variation. This, of course, may or not be a change in ink strength. Further 
analysis is necessary to diagnose the actual source of predominant variation. This 
can be done by, for example, determining the expected direction of variation due to 
any particular physical cause, and then calculating the angle between that and the 
direction of the major axis of the ellipsoid.

The distribution of Zc

Measured production color data has been collected from eight sources, encompassing 
3,005 data sets of lengths from 50 measurements to 7,000 measurements. The 
combined data set includes 559,449 color measurements. 

Company B – Flexo CMYK solids and halftones, over 1 year
Company C – Flexo, 4 spot colors
Company K – Ektachrome photography
Company M – Toner-based digital printing of IT8 charts
Company N – Newspaper, 102 printers 
Company P – Plastics 
Company R – Two press runs of spot colors 
Company S – 170 spot colors

Ellispi cation was done on all 3,005 data sets. Extreme outliers (Zc  6.0) were 
removed one at a time from each of the data sets before combining all the Zc values.

Figure 16 shows a cumulative probability density function of these one-half million 
data points, with Zc on the horizontal axis and the probability that a Zc value is less 

Figure 15 – 
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than that value on the vertical axis. For example, the probability that a Zc value 
from this set of data is below 2.0 is roughly 75%.

The purple line is actual data. The dashed blue line is the chi distribution with three 
degrees of freedom.

This is strong evidence that Zc values computed from real production color data is 
close to following the chi distribution with three degrees of freedom, or that color 
data is trivariate normal. 

The chi distribution is not to be confused with the more common chi-square 
distribution, which is the distribution of the sum of the squares of some number 
of normal variables with zero mean. It is often associated with regression analysis. 

In the eld of color, it has been noted in analysis of real data that the square of 
E has approximately a chi-square distribution with three degrees of freedom 

[Dolezelak, McDowell 1997 and 2003, ASTM]. 

Viggiano has laid out the four criteria required for E to have a chi-square 
distribution with three degrees of freedom. The three color components (L*, a*, 
and b*) must all: 1) have zero mean, 2) be normally distributed, 3) have the same 
standard deviation, and 4) be independent.

Nadal et al. hypothesize that since L*, a*, and b* are generally correlated, it may 
be appropriate to use less than three degrees of freedom. The use the number of 
degrees of freedom as a regression parameter and determine non-integer values for 
their sets of color difference data. (Their color differences are all determined from 
the centroid of the data set, so Viggiano’s rst criteria is always met.

Figure 16 – 
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Seymour [2012 and 2016] investigated numerous color difference data sets from 
various sources and concluded that Viggiano’s criteria are rarely met in practice, 
and that every data set has its own distribution of E. This is readily apparent from 
the data in Figure 2.

The fact that there is not one standard distribution for color difference data makes 
it problematic for use with SPC. 

The chi distribution is much less well known than the chi-square distribution 
[Weisstein, Evan et al.]. It is the distribution of the square root of sum of the squares 
of some number of normal variables with zero mean. 

Wonkiness

Naturally, all data sets do not closely follow the chi distribution. The degree to 
which the distribution ts correlates with the degree that the production run was 
“in control”. If the production run was “wonky” then it is likely that the cumulative 
probability density function will deviate signi cantly from the theoretical. 

The difference between the median of the data set and the median of the chi 
distribution (Zc = 1.53817) is a single number measure of the discrepancy in 
cumulative probability density functions. This is illustrated in Figure 17, which is 
the cumulative probability density function from the data set in Figures 12 and 13. 
From these gures, it was clear that the full production was not in control.

I de ne the wonkiness, W, to be the difference (1000  (1.53817 - median (Zc 
data))) to be the wonkiness factor. In the example in Figure 17, W is roughly 200. 
From a cursory look at the data sets, it would appear that W > 100 is an indication of 
an ill-behaved production run. Further work needs to be done to establish threshold 
values for W. In particular, the calculation of W is less stable for smaller data sets 
(below 300 samples).

Figure 17 – 
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One curiosity is that for larger data sets, W is generally greater than 0, which is to 
say, the median falls below 1.53817, as in Figure 17. It can also be seen in Figure 
17 that the Zc values of the data starts to catch up to the theoretical around the 90th 
percentile so that values of Zc > 3 are much more likely than one would expect. The 
prevalence of outliers is likely what drives W to increase.

Ellipsoid volume

The volume of the ellipsoid is a single-number measure of the color variation in 
units of E. The volume is proportional to the product of the length of the three 
axes, that is, to the product of the three standard deviations. 

If the product of the three standard deviations is multiplied by 65.44, then the 
volume can be interpreted as the volume of an ellipsoid which will theoretically 
contain 90% of the samples.

This may be used as a simple way to compare the variation of one process against 
another. For example, if a printer purchases a new piece of equipment or makes 
some change in the work ow, the ellipsoidal volume can be used to gauge whether 
the variation has improved.

If the calculations are done in E00, then it is possible to gauge the visual impact of 
the variation in a way that is independent of the position in color space.

The goal of conformance is to establish whether a certain percentage of samples is 
within a certain tolerance. This is a very important question, nancially. Contracts, 
rebates, and re-runs of jobs depend on questions of conformance to established 
tolerances.

If color were a simple one-dimensional parameter that were normally distributed, 
conformance testing would be something on the order of “if the average is within 
the tolerance range and is more than x standard deviation units away from either 
end of the range, then conformance has been demonstrated.” 

In most industries, conformance testing is based entirely on the estimation of the 
mean and standard deviation. These two numbers are derived from the whole data set; 
every data point is represented in the estimation. As such, these are robust estimates. 

Since color is not a simple one-dimensional, normally distributed parameter, and 
this is generally known, conformance testing is often based on a direct estimate of a 
predetermined percentile. Various ISO standards in printing have required the 68th 
percentile, the 70th, and the 95th. 
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Direct estimation of higher percentiles from small data sets is possibly less robust 
than estimates of average and standard deviation, since the estimate of percentile 
depends on just a few samples. For example, if the 95th percentile is determined 
from 20 or fewer data points, the result depends critically on a single measurement. 
Measurements at the extreme end tend to have the most variability.

Ellipsi cation provides a means for estimation of the percentage within a tolerance 
window which has the same robustness as the method based on average and 
standard deviation.

The capability index from Six Sigma is a metric from traditional (one-dimensional) 
SPC which is used to gauge whether a process in its normal state is capable of 
consistently producing product which is within the customer’s tolerance. As such, 
this lies at the intersection between SPC and QA. SPC de nes the normal state of 
the process and QA de nes the customer’s tolerance.

At rst thought, it would seem reasonable to “simply” generalize the formula for 
the capability index to three dimensions, as has been done with Zc. Unfortunately, 
for many reasons, this is neither useful, appropriate, nor possible.

1. The units of SPC (Zc) and QA ( E) are different. 

2. The contractual statement of tolerances for color are different than in other 
industries.

3. In one dimension, the test is a simple position on a line segment, so simple 
subtraction is adequate. For three-dimensional color data, the test involves 
integrating the probability de ned by the ellipsoid at each color within the 
ovoid color tolerance, as shown in Figure 18. There is no simple way to 
compute this



2018 TAGA Proceedings 47

Figure 19 provides motivation for how the probability of satisfying tolerances   can 
be calculated. The orange bars are the histogram of E00 values (from target color) 
for a set of 7,000 measurements of a spot color from Company S.

This data was ellipsi ed to arrive at the nine parameters of the ellipsoid. From 
these nine parameters, and the L*a*b* of the target color, the theoretical histogram 
was calculated. This is the dark blue curve in Figure 19. It matches the histogram 
reasonably well, which is to say, the production was in fairly good control.

This theoretical histogram can be used to determine the percentage of production 
units that will meet a given color difference tolerance.

Figure 18 – 

Figure 19 – 
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In this case, where there are 7,000 data points available, there is no need for the 
complication of ellipsi cation. It would be relatively easy and accurate to just count 
the number of data points in the original data that are within the desired tolerance. 
Based on this, one can con dently make statements like “based on previous 
production runs, 98.2% of the product will be produced within 3.0 E00 of the 
target color.”

But in many cases, considerably less data is available. Unfortunately, this is often 
the case when conformance requirements are written into contracts. This is also 
the case during a press run, where it would be useful to have a runtime estimate of 
either the 95th percentile of the E values or of the percentage of the run which is 
expected to be within the E tolerance. 

One conjecture is that the ellipsi cation method of estimating a percentile of color 
difference data will be more accurate for small data sets than the alternative brute 
force method of determining percentiles of a data set. Testing of this conjecture is 
part of ongoing work.

Conclusions

It has been demonstrated that a runtime chart of E is not useful for monitoring of 
conformance. 

Further, such a runtime chart is misleading for purposes of SPC, since it often 
misses agging measurements which are outliers, and can also ag measurements 
which are not truly outliers. The agging of outliers can be improved if the target 
color for E calculation is the rst sample of the press run. 

An improved metric for identi cation of outliers, Zc has been proposed and 
demonstrated on real production data.

The Zc metric is based on a process called ellipsi cation, which is also introduced 
in this paper. If the underlying data is trivariate normal, then Zc will follow a chi 
distribution with three degrees of freedom.

It has been demonstrated with one-half million measurements of production runs 
that Zc will follow a chi distribution with three degrees of freedom.

A new metric, wonkiness, has been introduced, which is a measure of the degree 
to which a set of color measurements is 3D normal. This can be used as a test for 
whether a color process is in control. 

Another new metric, ellipsoidal volume, has been introduced, which is a measure 
of the variability of a process. This can be used to compare one process to another.
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Finally, a method has been introduced for estimating the percentage of color values 
from a production run which are within a color tolerance. It has been asserted that 
this will be a reliable method for providing this estimation from a small sample set. 
This assertion has not been tested.

This is an ongoing project. The results in this paper provide a proof of concept of 
several of the methods, in particular, the Zc metric for identi cation of outliers and 
the wonkiness metric for identifying processes which are not in control.

Other metrics introduced in this paper have not been tested. This is part of ongoing 
work.

The more substantial part of this ongoing project is taking these methods from proof 
of concept to proof of utility. The author is actively soliciting color practitioners 
from all industries to provide real world problems to test whether the methods can 
provide actionable information to production environments.

The author gratefully acknowledges the anonymous donations of data from 
Companies B, C, K, M, N, P, R, and S. Without this data, this work would not have 
been possible.

The author also gratefully acknowledges the careful review of an earlier draft by 
Brian Gamm, Danny Rich, and Steve Tiltman.
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Appendix

Table of probabilities for the chi distribution with three degrees of freedom.

x
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00

P (Zc < x)
0.00407859
0.0308596
0.0950391
0.198748
0.332078
0.477833
0.617911
0.738536
0.832723
0.899939
0.944026
0.970709
0.985657
0.993426
0.997179
0.998866
0.999573
0.999849
0.99995
0.999985
0.999996
0.999999

1
1

1 in n chance?
1.00
1.03
1.11
1.25
1.50
1.92
2.62
3.82
5.98
9.99
17.9
34.1
69.7
152
354
882
2342
6638
20075
64765
222866
817894

3.20064*10^6
1.3354*10^7
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