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Abstract

Two new sets of reference materials have been evaluated for their ability to 
standardize one spectrophotometer to another. Standardization is the act of applying 
corrections to spectral data from one spectrophotometer in order to attain better 
agreement with another.

This paper focuses on one aspect of the suitability of the sets of reference 
materials: whether the spectra of the reference materials are rich enough to provide 
a numerically stable calibration of the equations which correct one instrument to 
another. Additional sets of potential standardization materials are also analyzed 
in order to provide perspective on the results. These additional sets are likely 
unsuitable because of lack of physical durability.

The results demonstrate that 1) It is physically possible to create a set of reference 
materials that can provide numerically stable standardization, but 2) The two sets 
of reference materials, at best, provide marginally acceptable numerical stability.

Statement of problem to be solved

Reference materials are physical standards that can be used to improve the color 
measurement process in several ways. They are also known under the names color 
standards, reference standards, or verification standards. There are three ways that 
they may be used.

Use case 1: Reference materials can be used to verify that a color measurement 
device has not changed. The set of physical standards is measured initially, like 
when the instrument is purchased, and then again at regular intervals. If the 
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measured values do not change appreciably from the initial measured values, then 
it is assumed that the measurement device continues to measure faithfully.

This technique can be robust provided the set of reference materials is physically 
stable, that is, resistant to scratches and fading. Ceramic color tiles are popular as a 
reference material for this reason.

For this use case, there is not a strong need for a broad set of colors; it has been 
suggested [Berns and Reniff, 1997] that a single cyan tile may be adequate.

Use case 2: Reference materials can be used to quantify the agreement between 
two color measurement devices. This quantification may advise the user as to the 
suitability of mixing the two devices in an work flow.

The requirements of the reference materials for this second case are somewhat 
different than for the first case. The physical stability of the reference materials 
is less critical, especially if the two instruments are to be compared sided-by-side 
and at the same time. But the need for a wide range of colors (or more accurately, 
spectra) is essential to accurately assess the agreement of the instruments.

A less obvious requirement is that the reference materials should be similar in 
nature to the samples that will be measured. It has been found that differences 
in the illumination and acceptance angles between two different models can be a 
substantial source of disagreement. In addition, differences in aperture size may 
create disagreement in measurement due to the lateral diffusion of light within 
certain of the ceramic tiles. Light that scatters broadly may exit the tile in a place 
where the aperture of one instrument may allow its collection, but not the aperture 
of another [Seymour, 2014, ISO/TS 23031].

Thus, instrument agreement based on measurements of, for example, high-gloss 
ceramic reference materials may not be representative of disagreement that will be 
seen when two color measurement devices are measuring samples of print.

Use case 3: Reference materials can be used to standardize one spectrophotometer 
to another [Robertson 1986, Berns and Peterson 1988, Berns and Reniff 1997, 
Rich and Martin 1999, Van Aken 2000, 2003, 2006, Chung et al. 2002, Rich 
2004, Nussbaum et al. 2011, Seymour 2013]. This is the practice of using a set 
of reference materials to determine the parameters for a transform which converts 
spectral reflectance values from one spectrophotometer so as to more closely agree 
with another spectrophotometer. The most common technique for standardization 
involves quantifying an offset term, an overall gain, and a wavelength shift.
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Evaluation criteria for a standardization set

There are a number of requirements that must be met for a set of samples to be 
considered a good standardization set. The physical properties must be stable under 
the conditions it is expected to be used. If it must be shipped between plants, it 
should be able to recover from extremes of temperature that it is likely to encounter. 
If it is to be used for several years, it must not be subject to fading in that period 
of time.

The well-known set of Lucideon Colour Standards Series II (CCSII) (AKA 
Ceram, AKA BCRA) has been shown to provide this stability. Aside from some 
well understood issues with thermochromism (transient change in color due to 
temperature), this set of tiles has been proven useful for verifying that a color 
measurement device has not changed (use case #1).

A second criterion for a standardization set is that it must provide a rich enough set 
of spectra for the correction technique to be mathematically stable. If one wishes, 
for example, to correct for a spectral shift between two instruments, then the 
samples must include spectra which shows transitions, i.e. changes in reflectance 
with respect to wavelength. This was investigated previously [Seymour 2013].

Quoting from that paper: “standardization with a seemingly reasonable set of 
samples and a seemingly reasonable underlying mathematical model can be a 
worthless endeavor, and can often significantly worsen intra-model agreement.” 
The well-known set of BCRA tiles was found to not be rich enough for this purpose.
In another paper by Seymour [2014] it was shown that one of the causes for 
disagreement between instruments with different designs had to do with the 
geometry of illumination and detection. The differences in design even within the 
group of ostensibly 45:0 (or the equivalent 0:45) geometry was significant.

For samples with either extremely rough or highly polished surfaces, the difference 
between two instruments with similar geometry is minimal. Unfortunately, almost 
all the material to be measured in the print industry fall between these two extremes. 
The amount of difference between measurements depends on where the measured 
samples lie in the range from matte to glossy.

It is important to note that this difference depends almost entirely on the surface 
roughness and index of refraction of the material– one instrument will capture more 
of the specularly reflected light than the other. Therefore, the difference between 
two instruments will likely be an offset. On the up side, the magnitude of the offset 
is not significantly dependent on any of the bulk characteristics of the sample.



Thus, it is possible to accurately standardize one instrument to another, provided the 
standardization set has a similar roughness and index of refraction as the samples 
to be measured.

Here again, the standard set of BCRA tiles are not suitable for standardization. 
They are considerably glossier than any print.

Thus, we have a set of ceramic reference materials which is in common use 
for verification of spectrophotometers in the graphics arts, but which has two 
undesirable properties when it comes to standardization of one instrument to 
another. The ceramic tiles are considerably glossier than printed samples, and they 
are less than ideal in their ability to calibrate at all wavelengths.

Evaluation of two potential standardization sets

The ISO technical specification ISO/TS 23031 recommends the ChromaCheckerTM 
Instrument Inspector target as a set of reference materials for comparison between 
different models of color measuring device. It further suggests that this set may 
be used to diagnose causes for disagreement. It stops just short of suggesting 
ChromaCheckerTM as a set of reference materials for standardization of one color 
measurement device to another.

There are two physical reasons to prefer this set of reference materials over 
the BCRA tiles. First, the gloss of the ChromaCheckerTM is within the range of 
print, whereas ceramic tiles are generally considerably glossier. Second, the 
patches are a thin film, so lateral diffusion is minimized, or is at least similar to 
what may be found in graphic arts samples. However, the spectral suitability of 
ChromaCheckerTM Instrument Inspector target has yet (to the knowledge of this 
author) to be investigated.

Another candidate for a set of reference materials for standardization of color 
measurement devices is a set of reference materials which Lucideon has developed 
specifically for the print industry. The Lucideon Print Standards are available in 
either glossy or matte finish. The latter was investigated for this paper, since they 
are deemed to be closer to the finish of print. As with the ChromaCheckerTM set, this 
author is unaware of any published assessment of the Lucideon Print Standards for 
the purpose of spectrophotometer standardization.

This paper fills that need by investigating the spectral suitability of these two 
potential standardizations sets and comparing this with other sets of samples. The 
assumption is made that these two sets of standards meet the requirements for 
physical durability and stability.
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It is also assumed that the gloss and lateral diffusion characteristics of the two 
standardization sets are sufficiently close to those of printed material. This seems 
reasonable, but it is regardless an untested assumption.

Theoretical background

The list of potential reasons for two instruments to disagree is rather daunting. The 
following list was compiled by Seymour [2014] (with reference to Spooner [1991]): 
repeatability, black level, rejection of scattered light, white level, measurement 
geometry, nonlinearity, aperture size, wavelength alignment, bandwidth difference, 
and fluorescence.

Much of the work around standardization of instruments has been based on the 
assumption that white level, black level, wavelength alignment, and bandwidth 
difference are the major sources of disagreement. Standardization methods have 
been developed to quantify and correct the differences between to instruments 
based on this assumption. A set of samples are measured with both instruments, 
and the discrepancies are used to calibrate the resulting equations.

Differences in white and black level can be readily quantified from a white and a 
black sample. Wavelength alignment and bandwidth are a far more complicated 
matter. Seymour [2013] demonstrated that there is likely to be a significant 
nonlinearity between the measurements of two instruments. Regression techniques 
used to determine correction parameters may confuse wavelength shift and 
nonlinearity, since the two will have a similar numerical effect. This confusion 
can lead to a failure of the standardization process. If different physical causes are 
confused, standardization may worsen agreement between two instruments.

This confusion can be ameliorated if a standardization set has moderate collection 
of both positive and negative derivatives (reflectance as a function of wavelength) 
at each wavelength.

The mathematical models

Four different mathematical models are investigated in this paper, each with a 
certain combination of assumptions about the form of the correction needed. 
Variations on these models can be found in the literature [Robertson (1986), Berns 
and Reniff (1997), Rich and Martin (1999), Van Aken (2001), Chung et al. (2002), 
Rich (2004)].

While it is tempting to create a model that includes all possible corrections, the 
more individual parameters there are, the more samples are required to calibrate 
these parameters and the greater the requirements on the type of data required. 
The most appropriate mathematical model is dependent on the specific instruments 
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that are to be used. If the two instruments are of the same design, for example, 
adding terms for nonlinearity and black level may not be necessary, and in fact, 
may worsen the results due to misattribution. Therefore, it makes sense to look at 
multiple mathematical models.

The first four models tested in this paper assume that there could be a difference in 
black level, in white level, and a shift in wavelength. The four models here either 
include or exclude a correction term for bandwidth, and either include or exclude 
a correction for nonlinearity. A fifth model is added that excludes any wavelength 
dependence.

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆) 𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆)

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆)

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆)

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽5(𝜆)((1−𝑅𝑚(𝜆))𝑅𝑚(𝜆))

+𝛽4(𝜆)

+𝛽4(𝜆)

+𝛽5(𝜆)((1−𝑅𝑚(𝜆))𝑅𝑚(𝜆))

𝛽5(𝜆)((1−𝑅𝑚(𝜆))𝑅𝑚(𝜆))

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

Model #1 – black level, white level, and wavelength shift

Model #2 – include bandwidth

Model #4 – include bandwidth

Model #3 – include nonlinearity

Model #3 – include nonlinearity

(1)

(2)

(4)

(3)

(5)

The use of 𝛽5(𝜆)((1−𝑅𝑚(𝜆))𝑅𝑚(𝜆)) for the nonlinearity term deserves a bit of 
explanation. Note that setting 𝛽5(𝜆) to something other than zero will not change 
the value of the righthand side when 𝑅𝑚(𝜆)=0 or 𝑅𝑚(𝜆)=1, since the product inside 
the parentheses is zero in either case. Because of this, the parameter for scaling, 
𝛽1(𝜆), will not need to change appreciably if the nonlinearity term is removed. Thus 
𝛽1(𝜆) in Equation 3 retains the meaning of a scaling parameter. This form can also 
be found in Ingleson and Brill, 2007.
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Definitions of variables

𝑅𝑚(𝜆) is the measured reflectance of a sample at wavelength 𝜆, as measured on 
the instrument to be corrected.

𝑅𝑐(𝜆) is the corrected reflectance of the sample at wavelength 𝜆.
𝛽1(𝜆) is the calibrated offset parameter at wavelength 𝜆.
𝛽2(𝜆) is the calibrated gain parameter at wavelength 𝜆.
𝛽3(𝜆) is the calibrated wavelength shift parameter at wavelength 𝜆.
𝛽4(𝜆) is the calibrated bandpass correction parameter at wavelength 𝜆.
𝛽5(𝜆) is the calibrated nonlinearity correction parameter at wavelength 𝜆.

The first and second derivatives are estimated from the measured spectrum 
according to the following.

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑅𝑚(𝜆+Δ)−𝑅𝑚(𝜆−Δ)
2Δ≈

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑅𝑚(𝜆+Δ)−2𝑅𝑚(𝜆)+𝑅𝑚(𝜆−Δ)
2Δ≈

(6)

(7)

The parameter Δ is the wavelength interval of the instrument to be standardized, 
typically 10 nm or 5 nm. Since the units are arbitrary (they could be nanometers or 
Angstroms or microns) we will set the units conveniently so that Δ=1, which is to 
say, the units are 10 nm for an instrument that reports every 10 nm.

Note: There was an error in a previous paper by this author: Equation 5 in Seymour 
(2013), which gives the formula for the approximation of the second derivative, is 
incorrect. Equation 6 corrects this.

Note: These mathematical models all require measurements at a collection of 
adjacent wavelengths in order to determine the derivatives. As such, the models 
are not appropriate for standardization which involves one or more colorimeters.

Determination of the correction parameters

The explanation for the determination of correction parameters that follows assumes 
the mathematical model #1, which is the simplest of the four models. Derivation of 
the other three models follows along the same lines.
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We start with the following values

𝑅𝑚(𝑖,𝜆) is the reflectance value of sample i at wavelength 𝜆 on the instrument 
which is to be standardized.

𝑅𝑟(𝑖,𝜆) is the reflectance value of sample i at wavelength 𝜆 on the reference 
instrument.

If we take model #1 as an example, we must determine the set of correction 
parameters 𝛽1(𝜆), 𝛽2(𝜆) , and 𝛽3(𝜆) which minimize the error in the following set of 
equations, with one equation for each of the n samples in the standardization set.

(8)

(10)

(9)

𝑅𝑟(1,𝜆)−𝑅𝑚(1,𝜆)=𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(1,𝜆)+𝛽3(𝜆)

𝑅⃗𝑟(𝜆)−𝑅⃗𝑚(𝜆)=𝑀(𝜆)𝛽(⃗𝜆)

𝑅𝑟(1,𝜆)−𝑅𝑚(𝜆) 𝛽1(𝜆)
𝛽2(𝜆)
𝛽3(𝜆)

1  𝑅𝑚(1,𝜆)

1  𝑅𝑚(2,𝜆)

1  𝑅𝑚(n,𝜆)

𝑅𝑟(2,𝜆)−𝑅𝑚(𝜆) =

𝑅𝑟(𝑛,𝜆)−𝑅𝑚(𝜆)
[ [ ][ ]]⋮ ⋮ ⋮

𝑅𝑟(2,𝜆)−𝑅𝑚(2,𝜆)=𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(2,𝜆)+𝛽3(𝜆)

...

𝑅𝑟(n,𝜆)−𝑅𝑚(n,𝜆)=𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(n,𝜆)+𝛽3(𝜆)

𝑑𝑅𝑚(1,𝜆)
𝑑𝜆

𝑑𝑅𝑚(1,𝜆)
𝑑𝜆

𝑑𝑅𝑚(2,𝜆)
𝑑𝜆

𝑑𝑅𝑚(n,𝜆)
𝑑𝜆

𝑑𝑅𝑚(2,𝜆)
𝑑𝜆

𝑑𝑅𝑚(n,𝜆)
𝑑𝜆

Note: There is one equation for each wavelength, and a set of correction parameters 
𝛽𝑖 will be determined at each wavelength. This is the most general case, and is most 
appropriate for instruments that utilize a separate filter for each wavelength that is 
measured. In this case, it is expected that there not be a clear relationship between 
the wavelength shift and one wavelength and the next. If both instruments utilize 
a grating and an array of photodetectors, there may be a correlation between the 
wavelength shift at neighboring wavelengths and a simple relationship between 
them. In this case, it would be beneficial to broaden the regression to look at all 
points at once. This is beyond the scope of this paper.

This set of equations can be rewritten in matrix form.

In a more compact form, we have
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While the correction parameters 𝛽𝑖 can be determined at any point in time, there 
is no point in repeating the exercise if neither of the instruments have changed. In 
fact, doing so will only increase the variability of the measurement system. It is 
recommended that they be recalculated whenever one instrument or the other is 
recertified at the factory, or when a significant drift is noted by routine verification 
against a set of physical standards (use case 1).

For the purposes of this paper, the correction parameters are determined on 
a wavelength-by-wavelength basis, without consideration of the correction 
parameters at neighboring wavelengths. For some pairs of instruments, it may be 
desirable to determine the parameters en masse to take advantage of relationships 
between the correction parameters at different wavelengths. For example, if both 
instruments are grating instruments, then there is likely to be a simple equation 
that estimates the wavelength shift as a function of wavelength. Such an approach 
would not be appropriate if one or both of the instruments utilize discrete bandpass 
filters at each wavelength.

Spectral suitability of a standardization set

It has been stated before that the standardization set must be sufficiently rich so 
as to provide a reliable standardization. One way to test the reliability is test the 
standardization on a large number of instruments. A standardization would be 
done for the standardization set under test for each pairing of instruments. This 
standardization would be tested by looking at how well the method standardized 
each pairing on a different set of samples. This was the approach followed in 
Seymour [2013], with a total of three instruments.

Such a study is invaluable in that it is grounded in reality. Any conclusions 
derived from such an experiment are certainly indicative of performance of those 
specific instruments (model and serial number). The conclusions can potentially be 
generalized to different specific instruments of the same family (same model, but 
different serial numbers). Generalizing the conclusions to parings of instruments 
that were not included in the initial test is somewhat less reliable. The conclusions 
depend on the magnitudes of the various sources of disagreement between the 
instruments.

Another way to test the standardization sets would be to do simulations of a wide 
number of possible magnitudes of the various sources of disagreement between the 
instruments. While this could provide valuable theoretical information about what 
might happen, it is unclear how the conclusions might apply to specific instruments. 

(11)𝛽 ⃗(𝜆)=(𝑀(𝜆)𝑇 ∙ 𝑀(𝜆))−1𝑀(𝜆)𝑇 ∙ (𝑅⃗𝑟(𝜆)−𝑅⃗𝑚(𝜆))

The least-squares solution for the vector of correction parameters 𝛽(𝜆) is
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Does the simulation include realistic magnitudes of each of the possible sources of 
disagreement?

A third approach has been taken in this paper. This method is theoretical, but it 
comes to the heart of the issue of assessing the richness of a standardization set for 
a given mathematical model.

Consider the case where a hapless standardization set only included white, black, 
and gray samples, each of which were perfectly flat spectrally. In this degenerate 
case, the derivatives, as computed through Equation 6, and as used in Equation 8, 
would all be zero. As a result, the matrix 𝑀(𝜆)𝑇 ∙ 𝑀(𝜆) in Equation 11 would not be 
invertible, and it would not be possible to solve for 𝛽(⃗𝜆). This is just a mathematical 
explanation for what we already know. If the standardization set is spectrally flat, it 
isn’t possible to determine wavelength shift.

Take this example a step further. It is virtually impossible for a measured spectrum 
to have exactly the same reflectance at all wavelengths. So, if a standardization 
set includes actual measured spectra of white, black, and gray and those samples 
were virtually flat, spectrally, there would be a non-zero derivative and the matrix  
𝑀(𝜆)𝑇∙ 𝑀(𝜆) would be invertible. This would appear to solve the issue 
mathematically, but yet from a practical standpoint, we know that the results would 
be disastrous.

The issue in this discussion is that we have used a binary characterization of  
𝑀(𝜆)𝑇∙ 𝑀(𝜆); either the matrix is invertible or it is not. We need a way to quantify 
the numerically stability of the results. Numerically stability is a measure of how 
much a calculation is affected by small changes in the input data. A numerically 
unstable calculation will show big changes due to small amounts of noise in the 
data.

Numerical stability

There are two parts to the computation to be considered:

1)	 The determination of the vector of correction parameters 𝛽(𝜆). The 
determination of 𝛽(𝜆) is an infrequent event which is based on measurements 
of a standard reference set.

2)	 The use of those correction parameters to correct a measurement from one 
instrument to better agree with a measurement from another.

These will be addressed one at a time.
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Error in determination of correction parameters

There are two considerations for assessing the error in determination of correction 
parameters. The first consideration is the error in the measurements and the second 
is the amplification of those measurements.

To recap the equation for the determination of 𝛽(𝜆)

(11)

(12)

𝛽 ⃗(𝜆)=(𝑀(𝜆)𝑇 ∙ 𝑀(𝜆))−1𝑀(𝜆)𝑇 ∙ (𝑅⃗𝑟(𝜆)−𝑅⃗𝑚(𝜆))

where

𝑅⃗𝑟(𝜆) is the vector of reflectance values of the standardization samples at 
wavelength 𝜆 on the reference instrument. There is one element in this vector 
for every sample in the standardization set.

𝑅⃗𝑚(𝜆) is the vector of reflectance values of the standardization samples at 
wavelength 𝜆 on the instrument which is to be standardized. There is one 
element in this vector for every sample in the standardization set.

M is the matrix derived from the measurements of the standard reference set taken 
with the reference instrument. An example of this matrix (for Model #1) is shown 
below. Other models would include a different collection of columns.

𝑀(𝜆)=

1  𝑅𝑚(1,𝜆)

1  𝑅𝑚(2,𝜆)

1  𝑅𝑚(n,𝜆)
[ ]⋮ ⋮

𝑑𝑅𝑚(1,𝜆)
𝑑𝜆

𝑑𝑅𝑚(2,𝜆)
𝑑𝜆

𝑑𝑅𝑚(n,𝜆)
𝑑𝜆

Error in measurements

One common specification for spectrophotometers is repeatability. This metric 
quantifies the degree that replicated measurements of the same sample agree when 
they are taken over a short period of time. A typical spec for this is 0.1% reflectance. 
Assume that both instruments will have this variation. The difference is computed 
between the two, so the standard deviation of the repeatability of the difference is 
1.4 X 0.1% = 0.0014.

This is only one source of variation. The placement on the sample will necessarily 
be somewhat different between the two instruments. This paper will assume that 
the samples are uniform enough and the placement of the spectrophotometers on 
the samples is smaller than the basic repeatability, but still of minor significance. It 
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(13)

(14)

(15)

(16)

[

[

[

[

[

[

[

[

[

[

[

[

]

]

]

]

]

]

]

]

]

]

]

]

3
4

3.00
4.00

3.01
3.99

3.01
4.01

x
y

x
y

x
y

x
y

1
1

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.01

1.00
1.01

1.00
1.01

1
1

=

=

=

=

no solution

x = −97 and y =100

x = −94.99 and y =98

x = −96.99 and y =100

is thus assumed that each entry in the vector (𝑅⃗𝑟(𝜆)−𝑅⃗𝑚(𝜆)) has an error which is on 
the magnitude of 0.002 reflectance.

Sidebar - numerical instability of matrix inversion

The error magnification depends critically on that nature of the matrix. A brief 
introduction to this source of numerical instability is in order.

Matrix inversion may cause an unexpected amplification of small noise in 
measurements. The following simple example will give an appreciation for the 
concept of numerical instability. Suppose one wished to solve the following matrix 
equation for the values of x and y.

The equation clearly has no solution. To satisfy the equation, the sum of x and y 
must both be 3 and 4. Such an equation is not common in the real world where 
the entries in the matrix are likely measured quantities. One may instead see an 
equation like the following, which can actually be solved. Note that the equation is 
only very slightly different from the previous, with the 1 in the lower right corner 
replaced by a 1.01.

But the solution to this is numerically instable. A small change to the vector on the 
left may cause a comparatively large change in the solution. By changing the values 
of the vector on the left by only 0.01, the solution changes by about 2. The small 
perturbation was amplified by a factor of about 200.

Not all perturbations in the input vector will show this large of a change. In this 
equation, if the changes are in the same direction, the change in the solution is 
roughly the same size as the perturbation.
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The matrix causes this numerical instability because it is very close to a matrix 
that is non-invertible. This similarity can be measured with the eigenvalues. The 
eigenvalues of the matrix are 2.005 and 0.0049875. It is no coincidence that we 
found an amplification of 200, since this is close to the reciprocal of the smallest 
eigenvalue.

Application to this problem

Ideally, a set of reference materials will be rich enough to provide a stable correction 
for the correction model that is chosen. This might not be the case, however, if a 
model is used which requires derivatives and the reference materials are limited 
to gently sloping reflectance spectra. This dearth of information is evinced by the 
matrix 𝑀(𝜆)𝑇∙ 𝑀(𝜆) being nearly non-invertible. Near non-invertibility means that 
the determination of the correction parameters will be prone to error.

The condition number is a traditional measure of how close a matrix is to being 
non-invertible. For a square matrix, this is the ratio of largest to smallest eigenvalue. 
However, this standard approach is not appropriate for this application, since the 
magnitude of the smallest eigenvalue is irrelevant.

A related measure is used in this paper to directly assess the propagation of error. 
The measure is based on the observation that an eigenvalue of a matrix is a measure 
of the extent that multiplying the corresponding eigenvector by the matrix magnifies 
the eigenvector. Therefore, the appropriate measure is the largest eigenvalue.

Since the matrix (𝑀(𝜆)𝑇 ∙ 𝑀(𝜆))−1𝑀(𝜆)𝑇 is in general not square, the singular value 
decomposition was computed and the largest singular value was identified as the 
noise magnification factor.

Statistical versus maximum

Repeatability is a statistical measure; it quantifies typical behavior for an instrument. 
The magnification factor described above is a worst-case measure; it quantifies 
how large the magnification could be for a particularly unlucky collection of 
measurement noise.

Outliers are to be expected from any measurement device. As such, allowances are 
made for the occasional aberrant measurement – it may be filtered out or otherwise 
disregarded. Ant harm that may be caused by an outlier is transitory, since it is only 
a single measurement. There is generally no benefit to be gained in analyzing worst 
case behavior.
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Examination of the maximum errors in computing correction parameters is justified 
in this case because of the implications. While it may be unlikely that any given 
combination of measurement noise aligns substantially with the eigenvector of 
the largest eigenvalue, if this should happen, then all subsequent corrections may 
substantially ruin the agreement between two instruments.

𝜖𝛽3 ≈ 0.002𝑉𝑚𝑎𝑥

𝜖𝛽4 ≈ 0.002𝑉𝑚𝑎𝑥

(17)

(18)

where

𝜖𝛽3 is the magnified noise that is included in the estimate of 𝛽3(𝜆) that occurs 
during the process of determining the correction parameters,

𝜖𝛽4 is the magnified noise that is included in the estimate of 𝛽4(𝜆) that occurs 
during the process of determining the correction parameters, and

𝑉𝑚𝑎𝑥 is the largest eigenvalue of (𝑀(𝜆)𝑇 ∙ 𝑀(𝜆))−1𝑀(𝜆)𝑇.

Error in correction of a measurement

The second part, the correction of subsequent measurements is shown below for 
Model #2, which is the simplest model which includes a correction for bandwidth.

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆)

𝑅𝑐(𝜆)=𝑅𝑚(𝜆)+𝛽1(𝜆)+𝛽2(𝜆)𝑅𝑚(𝜆)+𝛽3(𝜆)

+𝛽4(𝜆)

+(𝛽4(𝜆) +  𝜖𝛽4) + 𝜖md

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

(20)

(20)

The error due to noise in the bandwidth correction can be seen by adding noise 
terms to Equation 2.

( )
where

𝑅𝑚(𝜆) is the measured reflectance of a sample at wavelength 𝜆, as measured on 
the instrument to be corrected,

𝑅𝑐(𝜆) is the corrected reflectance of the sample at wavelength 𝜆,

𝜖𝛽4 is the magnified noise that is included in the estimate of 𝛽4(𝜆) that occurs 
during the process of determining the correction parameters, and

𝜖md2 is the noise in the estimation of the second derivative from the measure 
sample.
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The final term expands out to

(𝛽4(𝜆)+𝜖𝛽4)

𝐸𝑟𝑟𝑏𝑤=𝛽4(𝜆)𝜖md2+𝜖𝛽4

𝐸𝑟𝑟ws=𝛽3(𝜆)𝜖md1+𝜖𝛽3

𝜖𝑚𝑑1≈0.002

𝜖𝑚𝑑1≈0.002

𝐸𝑟𝑟ws ≈ 0.0014𝛽3(𝜆) + 0  .002𝑉𝑚𝑎𝑥

𝐸𝑟𝑟ws ≈ 0.0014𝛽3(𝜆) + 0  .002  × 0.002𝑉𝑚𝑎𝑥 + 2.8 × 10−6𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 0.005𝛽4(𝜆) + 0  .002  × 0.10𝑉𝑚𝑎𝑥 + 1 × 10−5𝑉𝑚𝑎𝑥

𝐸𝑟𝑟ws ≈ 0.0014𝛽3(𝜆) + 4   × 10−4𝑉𝑚𝑎𝑥 + 2.8 × 10−6𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 0.005𝛽4(𝜆) + 2   × 10−4𝑉𝑚𝑎𝑥 + 1 × 10−5𝑉𝑚𝑎𝑥

𝐸𝑟𝑟ws ≈ 0.0014𝛽3(𝜆) + 4   × 10−4𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 0.005𝛽4(𝜆) + 2   × 10−4𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 0.0014𝛽4(𝜆) + 0  .002𝑉𝑚𝑎𝑥

𝐸𝑟𝑟ws ≈ 0.0014𝛽3(𝜆) + 0  .002𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 0.0014𝛽4(𝜆) + 0  .002𝑉𝑚𝑎𝑥

+ 0.0014 × 0.002𝑉𝑚𝑎𝑥

+ 0.005 × 0.002𝑉𝑚𝑎𝑥

+ 2.8 × 10–6𝑉𝑚𝑎𝑥

+ 1 × 10–5𝑉𝑚𝑎𝑥

+2 2√

√

≈ 0.0014

(1)2+(−2)2+(1)2 ≈ 0.005

𝜖𝛽4 𝜖md2

𝜖𝛽4 𝜖md2

𝜖𝛽3 𝜖md1

+𝛽4(𝜆)𝜖md2+𝜖𝛽4= 𝛽4(𝜆)+ 𝜖md
𝑑2𝑅𝑚(𝜆)

𝑑𝜆2
𝑑2𝑅𝑚(𝜆)

𝑑𝜆2

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

(21)

(22)

(23)

(24)

(25)

(26)

(30)

(33)

(31)

(34)

(32)

(35)

(28)

(27)

(29)

( )
The error due to bandwidth correction is

Similarly, the error due to wavelength shift is

The magnitude of the noise in the estimates of the first and second derivatives can 
be determined from Equations 6 and 7, using the fact that the standard deviation of 
the noise of a weighted sum of random variables is equal to the sum in quadrature 
of the weights times the standard deviation of the random variables. The 0.002 in 
the following equations is the standard deviation of the noise for a single reflectance 
measurement at one wavelength.

( () )1–
2

1–
2

xxxxxx

Based on analysis of several hundred spectra, it is not unusual to see first derivatives 
of 0.20, and second derivatives of 0.10.
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The correction terms are 𝛽3(𝜆)	  , and 𝛽4(𝜆)	 , and the first and second 
derivatives are generally smaller than 0.20 and 0.10, respectively. The error term of 
0.005𝛽4(𝜆) can be treated as insignificant in comparison. This brings us to a simple 
estimate for the magnitude of the error.

𝑑𝑅𝑚(𝜆)
𝑑𝜆

𝑑2𝑅𝑚(𝜆)
𝑑𝜆2

𝐸𝑟𝑟ws ≈ 4 × 10−4𝑉𝑚𝑎𝑥

𝐸𝑟𝑟bw ≈ 2 × 10−4𝑉𝑚𝑎𝑥

(36)

(37)

Potential standardization sets

As indicated above, there are two potential standardization sets which are being 
investigated for this study: The ChromaChecker and the Lucideon Print Standards.

ChromaChecker

ChromaChecker is a laminated card as shown in the image below. There is a total 
of 42 patches.

Figure 1: The Chromachecker

The spectra of the 42 patches is shown in the next graph. Two limitations are apparent 
from this plot. First, there is a lack of diversity in the lower wavelengths. At 380 
nm, the highest reflectance is just over 20%, making it difficult to determine a gain 
parameter. For the most part, the spectra start low at 380 nm and rise in reflectance 
up to around 420 nm, meaning that nonlinearity will be hard to distinguish from 
wavelength shift. It is surmised that this set of patches were printed on paper with 
largely transparent inks. A different choice of may improve this.

Second, the spectra are largely flat above 650 nm. As a result, it will be hard to 
determine wavelength-related parameters.
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Figure 2: Spectra of the 42 ChromaChecker patches

Figure 3: First derivative spectra of the 42 ChromaChecker patches

The first derivatives of the spectra are shown in the next image. This graph 
underscores the lack of strong derivatives above 650 nm.

The next image shows the second derivative of the spectra. Ideally, one would like 
to have strong positive and negative second derivatives at all wavelengths. This is 
perhaps met in the middle of the spectrum, but there is a shortage elsewhere.
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Finally, we have a plot of the nonlinearity function. With the possible exception of 
380 and 390 nm, there seems to be a decent diversity across the spectrum.

From this cursory analysis, it would appear that with the ChromaChecker, the red 
and blue ends of the spectrum may prove more difficult to accurately standardize one 
instrument to another. If the standardization algorithms are stable and the spectra 
are only to be used for conversion to CIELAB under one light source, this may not 
be a particular problem. The eye is less response at the ends of the spectrum.

Figure 4: Second derivative spectra of the 42 ChromaChecker patches

Figure 5: Nonlinearity function spectra of the 42 ChromaChecker patches
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Lucideon Print Standards

The Lucideon Print Standards are comprised of 14 ceramic tiles and are available 
with gloss, semi-gloss, and matte finish. They are mounted on a flat plate in a 
plastic case, as shown below. The plate is used to hold the spectrophotometer flat 
and stable while measurements are taken.

The next image is the spectra of the 14 Lucideon tiles. There are considerably 
fewer tiles, so the graph appears considerably less full. At the blue end, there is a 
considerably wider range of reflectance values available. It is hard (from this view) 
to tell if there is sufficient derivative information available.

Figure 7: Spectra of the Lucideon Print Standards

Figure 6: The Lucideon Print Standards, in their case
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Next, we have the first derivatives. There appears to be a more even coverage than 
the ChromaChecker set, but the overall magnitude is smaller – this graph is scaled 
up to only 0.10.

Figure 8: First derivative spectra of the Lucideon Print Standards

Figure 9: Second derivative spectra of the Lucideon Print Standards
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Figure 10: Nonlinearity spectra of the Lucideon Print Standards

Figure 11: The 24 colors in the Behr paint samples

For comparison, six other sets of standards were included in the analysis. None of 
these additional sets of six are being recommended as a standardization set, due to 
limitations in the aforementioned required properties. The additional six are BCRA 
ceramic tiles, Behr paint ramps, Munsell ColorChecker, Pantone primaries, and 
set of 155 Sherwin-Williams paint samples. The Behr paint ramps were used in a 
previous study [Seymour 2013].
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Error magnification in computing correction parameters

The plots below show the first singular values for the ChromaChecker set with each 
of the five mathematical models. The vertical axis is Vmax, the largest eigenvalue of 
the matrix used to compute the correction parameters.

Note first that the magnitude of the error magnification groups according to the 
number of derivatives required in the mathematical model. Models #2 and #4 
(lighter and darker blue graphs) require first and second derivatives and have the 
highest errors. Models #1 and #3 (lighter and darker green graphs) require only 
first derivatives and have intermediate errors. Model #5 (red) does not require any 
derivatives, and shows the most stability.

Figure 12: Sherwin-Williams set of 155 paint samples

Figure 13: Error magnification for the 5 models on the ChromaChecker
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Figure 14: Error magnification for the 5 models on the Lucideon Print Standard

The differences in stability caused by the addition of a nonlinear term (comparing 
light and dark blue, or comparing light and dark green) is insignificant in 
comparison. Basically, having a black, a white, and a gray sample is sufficient for 
stable determination of nonlinearity.

The most startling thing about this plot is the magnitude of the instability of the 
models involving the second derivative. In certain parts of the spectrum, any error 
in measurement could by magnified by a factor of up to 300 in computing the 
correction parameters. From Equation 37 (repeated below for convenience), we see 
that error due to an unlucky calibration could be on the order of 0.2, which is to say, 
20% points in reflectance. Adding a potential 6% R noise to correct for 1% change 
in reflectance is completely unsatisfactory.

𝐸𝑟𝑟bw ≈ 2 × 10−4𝑉𝑚𝑎𝑥 (37)

The dashed lines in Figure 13 are the cutoff where Equation 37 would predict errors 
of up to 1% R, which might be considered marginally acceptable for some non-
demanding applications. The blue dashed line is the cutoff for the models which 
incorporate the second derivative. The green dashed line is the cutoff for the models 
which incorporate only the first derivative.

The graph below shows the same test applied to the Lucideon Print Standard. 
The magnitude of the errors for models #2 and #4 are on par with those of the 
ChromaChecker.
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This same analysis was applied to the other sets. It was found that the Munsell 
ColorChecker (shown below) had the best performance for the models which use 
the second derivative. If we ignore the problem area at 400 nm and below, the 
maximum error magnification is marginally acceptable for both models with second 
derivatives (Models #2 and #4), and also for models with only first derivatives 
(Models #1 and #3).

All of the sample sets have been shown to be completely unacceptable at many 
wavelengths for determining a correction between two spectrophotometers for 
bandpass.

Is an acceptable set possible?

Various combinations of sample sets were evaluated on the assumption that 
deficiencies in one set could be covered by strengths in another sample set. If the 
two key sets are combined (the Lucideon and the ChromaChecker), the result is an 
improvement over either. Much of the spectrum is marginally acceptable for the 
second derivative models, and all but a region around 670 nm is acceptable for the 
first derivative models.

Figure 15: Error magnification for the 5 models on the Munsell ColorChecker
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Figure 16: Error magnification for the combined Lucideon and ChromaChecker sets

Figure 17: Error magnification for the combined Lucideon and Munsell sets

A better combination was found by combining the Lucideon and the Munsell 
samples. As seen in Figure 17, the set is at least marginally acceptable at all 
wavelengths. For the methods which do not include the second derivative, it 
appears quite acceptable at all wavelengths. However, the Munsell ColorChecker 
is potentially not durable enough for this application.
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As an extreme test, all of the samples (301 in total) were combined into one potential 
standardization set. The error magnification values are shown in Figure 18. Note 
that this plot has been scaled differently that the previous, having a maximum of 20 
rather than 200. This shows that the combination of all the samples would provide 
a standardization that is quite stable numerically.

These results show that, while the two existing sets of reference materials may only 
be marginally acceptable, a set which is numerically stable is physically possible.

Conclusions

Two sets of potential standardization materials were evaluated for numerical 
stability with five different mathematical models. These sets are assumed to be 
physically durable and stable enough for standardization of spectrophotometers in 
an industrial setting.

Certain of the mathematical models utilize the second derivative of the spectra 
with respect to wavelength to quantify (and hence correct) a difference in bandpass 
between two instruments. It was found that the two candidates standardization sets 
were numerically instable on these models for much of the spectrum. The end result 
is a potential exacerbation of the discrepancies between instruments.
Certain other mathematical models utilize the first derivative to account for 
differences in wavelength position. This calculation is found to be somewhat more 
stable, but the two candidate sets are only marginally numerically stable at many 
wavelengths.

Figure 18: Error magnification for all the samples combined
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Seven other sets of physical standards were evaluated. These sets are likely to 
be lightfast, but none of them are expected to have the durability required for 
industrial use. However, certain of them have spectral that have the requisite 
numerical stability. This demonstrates the potential for the development of a set of 
standardization materials which are durable, lightfast, and provide for numerically 
stable standardization of one spectrophotometer to another.
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