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ABSTRACT 

The Plate/Press segment of any halftone printing process 
transforms halftone dots on film into halftone dots on 
paper, so that different shades of gray roay be reproduced. 
During this process, the fractional dot area of these dots 
change. This phenenomenon is called dot gain. Its study 
is an important quality control function, and is essential 
for proper tone reproduction. 

Because of their importance, dot gain curves have been 
modelled (put in equation form). This enables a 
parsimonious characterization of the entire dot qain curve 
by perhaps one or two parameters. 

The GRL Dot Gain Model provides an excellent fit to actual 
data using only one or two parameters, and enables the 
calculation of the critical printing areas. 

This paper discusses the basic model, its 
solution for the critical printing areas, 
the parameters, and cascading two curves. 
development and experimental verification 
presented. 
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SYMBOLS AND EXPRESSIONS 

af -fractional dot area on filh <O, 1) 
ad -fractional dot area on plate 
ap -fractional dot area on paper 
~ -characteristic gain (in a single-transfer 

situation, this is maximum gain) 
awf -Lower critical dot area--- a small dot that 

JUSt begins to print <area of ~hite on fil~) 
avf -Upper critical dot area --- a large dot that 

JUSt completely fills in (area of solid on film) 
sqrt<•l-Square root operator --- returns 

positive square root of <*> 

INTRODUCTION 

The study of dot gain is an integral part of a lithographic 
or relief quality control program. In addition, this 
information is necessary to obtain valid results froM the 
several dot area - optical density models <viz, the 
Yule-Nielsen equation, the Murray-Davies equation, and the 
Neugebauer equations>, because each assumes that the 
fractional dot area on the print is Known. In other 
liJOrds, these equations r_~quire_ that the dot gain be aclded 
to the dot area on fil~ before they are applied. 

The level of gain is not constant throughout the scale, but 
starts out small, increases to a maximum (usually in the 
vicinity of the 0 150 dot area on film}, and then tapers 
off. 

Several models have been proposed for dot gain. One of 
these, the FOGRA model (developed by Karl Haller)~ has 
found favor among researchers. Dot gain curves with 
characteristic gain values from -0 120 to 0 1 40 generated by 
this model are shoNn in Figure 1. 

In most printing applications, there exist t~o critical 
printing areas--- the first, awf, is the smallest dot that 
overcoMes dot sharpening and begins to print~ the second, 
avf, is the dot area on filM that produces a solid on the 
paper (i.e., where co~plete filling in begins). Typical 
values for these are 0 103 and 0,90, respectively. 

These two dot areas are of particular interest because they 
deterMine (to a large degree) the requirements for halftone 
negatives. Xnowing the values of the critical printing 
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areas awf and avf, the processworker will know that the 
highlight dots may be no smaller than awf 1 and the shado~ 
dots, in principle, may be no larger than avf. <In 
practice, the shadow dot is usually made larger than avf, 
because density will be continued to be added after 
cohplete filling in on the paper occurs.> 

'"' 
' 

' '0' 

FOGRA Model 

Figure 1. 
FOGRA Dot Gain Model. 

The lower left corner of the grid in Figure 1 is chopped 
off --- this boundary intersects the curve when af = a~f. 
In other words, the lower left portion is bounded by an aruf 
locator line. Similarly, the upper right corner is bounded 
by an avf locator line, which intersects the dot gain curve 
when af = avf. Note that in Figure 1 all curves have 
trivial awf's of 0 and trivial avf's of 1. 

Because the FOGRA model can only produce curves with awf's 
of zero and avf's of unity (100X>, it cannot be used to 
assist in determination of these two funda~ental 
parameters, and should not be used if such estiMation is 
desired. Because these two critical dot areas are of such 
vital ihportance, a model should be used which permits the 
estimation of these areas. 
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A new dot gain model "as developed at GRL tohich produced 
non-trivial awf's and avf's, This model is really a 
cascade of two or more very simple functions. Each 
function in this cascade represents a single transfer, or a 
group of closely related transfers of the same type. See 
Figure 2 for some curves generated by this basic function. 

-f}~" GRL Basic Function 

FIGURE 2, 
The GRL Dot Gain Model, 

THE GRL DOT GAIH MODEL 

The Basic Function-
The GRL Model for a single transfer is: 

gain= 2~sqrt[af(1- af>J <1> 

so that the dot area on paper as a function of the dot area 
on film may be expressed as: 

ap = af + 26sqrt[af(1- af)] (2) 

when a single transfer occurs. <sqrt<*> denotes the square 
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root.) The mathe~atical development of this ~odel ~ill be 
discussed in a seperate section of this paper. 

These equations are of course subJect to the restriction 
that 0 <= ap => 1 1 because it maKes little sense to 
consider dot areas less than zero or greater than unity. 
If the computed value of ap is less than zero, zero should 
be used instead. Similarly, if the computed value of ap is 
greater than unity, the value of ap should be set to one. 

Note that the model contains a single parameter ---~--­
~hich is the characteristic gain at af = 0 150. With one 
degree of freedom, this model allows either a non-trivial 
atuf <if bis negative>, or a non-tl'ivial avf <if~ is 
positive). 

Before considering the n1odel uJith both a11Jf and avf 
non-trivial, some fundamental formulas will be presented. 

The Inverse Relation-
Equation (2) ~aps a continuum of dot areas on film onto a 
similar continuuM of dot areas on paper. In many 
instances, it is desirable to have the inverse relation 
that is, the dot area on film expressed as a function of 
the dot area on paper. This is: 

267 + ap - 2~sqrt[~~+ ap<1 - ap)J 
1'+ 4a <3> 

Solution for the Critical Pl'intinq Areas-
The critical printing areas awf and avf may be solved f01~ 

by considering the special cases of ap = 0 and ap = 1' 
respectively. 

{ o, i.f .6.> 0 } 

atQf = } (4) 
{ 4~'L/( 1 + 4&), if L::l.( 0 } 

{ 1/(1 + 4C."), if 6>0 } 

avf = } (5) 
{ 1, if .D< 0 } 

Solutions for the Characteristic Gain-
One important advantage of dot gain models is their 
parsimonious description of a plate/press transfer 
function. Rather than having to specify every point on the 

427 



curve, these Models maKe it possible to reconstruct the 
entire curve frob one or t~o parameters. 

The characteristic ~ain may be computed from a sin~le (af, 
ap) pair. This enables the reconstruction of the entire 
pla~e/press characteristic curve from a single point on the 
curve. Of course, this assumes that Model <2> applies 
reasonably ~ell to the transfer bein~ considered, 

By re-arrangement of Equation <2> 1 

!::::.= ap - af 
2sqrt[af(1 - af)J (6) 

However, a number of (af, ap> pairs are available when more 
than one gray patch is printed on each press sheet, in 
addition to the solid patch. This is usually the case. It 

_is desirable to use all the patches on a press sheet, 
rather than a single patch, to minimize measurement error, 
bias fro~ systematic error in the ~odel, etc. The 
estimation of the characteristic gain, A 1 by least-squal'es 
is simple because 1'1odel <2> is linear in e::..and contains a 
single term: 

.4 .::. _ z; < a p - ,.a.._f .._) __ 
2Esql't[af<1- af)J (7) 

Naturally, the solid patch (where both af and ap = 1> 
should not be included in this calculation. Similarly, no 
(af, ap) pair for which ap equals zero or unity should be 
e·.<cluded from the calculation of 8. Other1vise 1 the 
estimate fli 11 be biased, producing estiQiates of ~ smaller 
than they should be, 

Equation (7) assumes that the error is proportional to the 
square-root of the dot gain, as indicated by the experience 
of the author. <This is a coruprimise between additive and 
multiplicative error. In addition, this automatically 
assigns extra weight to the dot areas at both ends of the 
scale. This is desirable, because it causes the poin~s on 
the curve in the highlight and shadow regions to have the 
greatest roeight in the determination of awf and avf,) 

The variance of this estimate is 

(8) 
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which is useful for putting confidence limits, etc., on the 
estimate of A, 

A CASCADE OF TWO TRAHSFERS: 

Equation <2> is a model for a single transfer, in ~hich 
either dot gain or dot sharpening <negative gain) ~ay 
occur. In practice, both of these pheno~enon occur to soMe 
relative degree. Additionally, it "locKs" the maximum dot 
gain to the 0 150 <SO%> dot on filn (see Figure 2>. 
Naturally, the maximum gain may occur at other values. 
Because of this, it is recorumended that, in general, two or 
more models of this type be cascaded, as follows: 

I 

~· Cascade Of Two 

I 

FIGURE 3, 
Cascade of Tooo Transfers. 

(.0..d constant) 

Consider the dot area on the plate, ad. Allow it to assume 
the role of ap in Equation (2), Then, we obtain 

ad ~ af + 2~d sql·t[af(l - af>J (9) 

This gives the dot area on the plate as a function of the 
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dot area on film. Naturally, the dot area on the plate is 
restricted to the interval from zero to 1. If an ad is 
calculated that is less than zero, the value of ad should 

t Cascade Of Two 

[ ,. ---f,/--,1--,.L-' . 
~ 11 -11+,£-c;rL_J 

FIGURE 4, 
Cascade of T~o Transfers. 

< 6p constant) 

naturally be set to zero . LiKewise, i f an ad is calculated 
that is greater than one (1001.> 1 the value of ad 5houl d be 
set to one before proceeding. Otherruise, in the next 
equation , the square root of a negative number ~ill be 
attempted, which can cause a computer run to seize, 

Ho~, let ad play the role of af in Equation (2): 

ap :: ad + 2~p-sql•t[ad(l - ad)] (10) 

Again, the dot area on paper should be adJusted if it does 
not fall into the range from 0 to 1. 

It should be noted that the characteristic gain on the 
plate (6.p) is ap - ad 1uhen ad 1 not af 1 equals 0 150 
CSOZ>. This distinction beco~es particularly important 
t~hen .6d is relatively la1•ge in nagnitude. 
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These two equations, when used together, can be used to 
a1odel troo consecutive tl'ansfers, one in 11hich dot 
sharpening occurs, and another in ~hich dot gain occurs. 
Hote that this model contains ttllo paraa1eters viz, L'ld (dot 
gain on the pi ate) 1 and 6p (dot qain on paper>. When t1110 
transfers are "cascaded" this way, the curves in Figures 3 
and 4 are generated. 

The dot area on the plate is not usually measured, nor is 
the author suggesting that this task should be a standard 
quality control function. What the author is suggesting 
is that the dot sharpening be considered as occuring solely 
during the transfer betrueen film and plate, and the gain be 
considered as occuring strictly on the press. While this 
is not entirely true, it does maKe the visualization of 
this cascade easier. That the dot area on the plate is not 
actually Measured is not important. 

As with one transfer, some fundamental relationships may be 
derived. Here, the first transfer will be considered to 
involve either gain or sharpening (~d positive or 
negative>, while the second transfer will be assumed to 
involve strict gain <~p is positive), 

The Inverse Relation- This is best accomplished by 
solving for ad in terms of ap, then af in terms of ad. 
This is accomplished via Equation <3>. 

Again, it should be Kept in mind that dot areas less than 
zero or greater than unity ~ay be computed. As before, if 
ad is not on this range, it should be set to the 
appropriate value (either 0 or 1) before computing the 
value of af, 

Solution for the Critical Printing Areas- Here, neither 
awp nor avp is trivial so long as one transfer involves 
sharpening and the other gain. Again, this is best 
accomplished by solving for the critical printing areas on 
the plate <viz, awd and avd> as per Equations (4) and (5) 1 
substituting awd for awf 1 and avd for avf. The critical 
dot areas on the film (viz, awf and avf) ~ay then be 
calculated as per Equation <3>. 

Solution for the Characteristic Gain Para~eters­
Unfortunitely1 it is not possible to solve for both~d and 
L1p with a single <af 1 ap) pair. While it ~ay be possible 
to accomplish this knowing also ad, the dot area on the 

431 



plate, the measurement of dot areas on the plate is not 
recom~ended. In addition, it was pointed out that the dot 
area on the plate is used mostly in a hueristic sense, as 
an e~pedient for visualization of the cascade of transfers. 

At least t~o (af, ap) pairs, then, are necessary if~ op 
and ~d are to be determined. A closed·for~ solution is 
possible on I y if one of the paraa1eters ( p1•esumab I y L\ d > is 
held fixed at some level. It therefore is reco~mended that 
either: 

1> Both Ad and Ap be estimated through 
least squares; or 

2> ~d is roughly estimated <from prior 
knowledge) and held fixed, tuhi le D.p is 
estimated as ~ith a single transfer, 
calculating each ad as a function 
of each at, and allowing ad to play 
the role of af in Equation <6> or 
<7> 1 as appropriate. This enables 
a closed-form solution, and may be 
estimated from a single <af 1 ap} pair. 

If the first course is chosen, it is necessary to have an 
initial estimate of the pararnete1·Cld 1 because it implicitly 
enters Equation <10> under a square root, and as a 
multiplier of itself. Consequently, non-linear least 
squares methods are required. 

It ~as originally belived that a good estimate for the 
stricti y non I ineal' parameter, nct, is 

'Ad ,...., 
~ = 112 - af (11) 

,--
where af is the dot area on film that produces maximum 
gain. This value could be interpolated from the step 
producing the maximum gain, and the two steps that bracKet 
this step. However, it has been found that this does not 
always produce a satisfactory estimate. 

Because of the conditional linearity of the parameter ~p, 
no initial estimate is necessary. 

432 



~ATHEMATICAL DEVELOPMENT OF MODEL 

There are essentially two contrasting views on the 
mechanism of dot gain--- the first, called the perimeter 
theory, holds that the gain is proportional to the 
perimeter of a dot, see Figure 5, 

Perimeter Model 

·--~ 

FIGURE 5, 
Dot Growth under the Perimeter Model, 

The second theory, called the IsoKonturen model 1 holds that 
all dots, regardless of their size, undergo a constant 
increase in diameter. See Figure 6. 

lsokonturen Model 

• e • 112, fj35r 
~50/' 11sor 

FIGURE 6. 
Dot Gro~Jth under the IsoKonturen l'!odel, 

The GRL Dot Gain Model ~as empirically derived to fit the 
general shape of typical dot gain curves. Nevertheless, it 
has theoretical basis in that it represents a 
reconciliation of these two opposing theories. <There is 
really no doubt that both of these models contain some 
element of the true mechanism.> 

The dot gain ~ill be explicitly solved for under both of 
these models, for dots of different shapes (viz, round, 
elliptical, square, and rho~bicl, The GRL Dot Gain Model, 
given in Equation <1> 1 will be sho~n to be a compromise 
solution between these two theories. 
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The Perimeter "odel-
When the dots are small, the perimeter will be the distance 
around the dot itself. Conversely, •hen the dots are large 
<near 100X> 1 the perimeter of the dot will be the distance 
around the clear hole. For e~pediency 1 dots on fil• with 
less than 0150 fractional dot area will be referred to as 
"highlight dots 1 " t~hile those dots on film with gt•eater 
than 0150 fractional dot area will be referred to as 
"shadow dots." 

In addition, it will be assumed here tentatively that the 
corners of the dots do not overlap. While this assumption 
is violated in practice for dots in the middletone range 
<appro~. SOX dots>, we shall, for the Moment, confine the 
region of interest to the areas where the dot corners do 
not JOin. 

Solution for Gain for Round and Elliptical Dots- While 
one "ould e:t.pect to find so-called "elliptical" halftone 
dots that were not true geometric ellipses, this 
assumption, however naive, is useful here because it 
defines the general, if not exact, dot boundaries. 

Also, circles are really special ellipses (i.e., with both 
axes equal in length>. Circular halftone dots will be 
treated as a special case of elliptical dot. 

The aspect ratio of an ellipse (the ratio of the "length" 
to the "uidth") of an ellipse is h. <In the case of a 
circle, h = 1). For highlight dots, the gain under the 
perimeter model will be: 

gain = g·sqrt[af <1 + h~>lhJ <12> 

where g is a constant of proportionality. For shadow dots, 
the gain t~ill be; 

gain = g•sqrt[(1 - af> <1 + ht)/h] <13) 

Cain for Rhombic and S!l.!!J't'e Dots- The measure of the 
acute angle of a rhombus formed by two sides, q, is 90 
degrees in the case of a square; less than 90 degrees in 
the case of a rho11bus. For highlight dots, the gain under 
the perimeter model will be; 

Cain = g·sqrt[af/sin(q)] <14) 
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and for shadow dots: 

gain = g•sqrt[(1 - af>lsin(q)J (15) 

The Isokonturen Model-
Under this ~odel 1 all dots, regardless of size, undergo a 
constant increase in dimensions. In offset processes 
(e.g., letterset 1 offset lithography) this ~anifests itself 
in one direction more than the other in the form of slur. 
Ho~ever 1 here the radial dot growth will be assumed to be 
constant in all directions. This assumption is of course 
violated• nevertheless, useful approximations can be 
derived under it. 

Gain for Round and Elliptical Dots­
For highlight dots, 

gain = g<1 + hl•sqrt[af/hJ + c 

with c a constant; and for shadow dots, 

(16) 

gain = g<l + hl·sqrt[(l - afl/hJ + c <17> 

Gain for Rhombic and Square Dots­
For highlight dots, 

gain = g·sqrt[af sin(q)J + c 

and for shadow dots, 

<lSl 

gain = g·sqrt[(l - af) sin(ql] + c (19) 

£_quation (1) as an Apyro>-.imation to Equations <12)- <19)­
For highlight dots, the dot gain for round, elliptical 1 

rhombic, and square halftone dots, under both models, mas 
of the form: 

gain = g-sqrt<af) + c (20) 

while, for shadow dots, we had: 

gain = q•sqrt<l - af) + c (21) 

~here, in some cases, c = o. Keeping in mind that when af 
is close to zero, <1 - af> is close to one 1 we have as an 
approximation for highlight dots: 
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gain = q·sqrt[af <1 - af)J + c (22) 

<This approximation seems to account for dot JOin.> As an 
approximation for the shadow dots: 

gain = g•sqrt[af (1 - af)J + c <23) 

Note that (22> and <23) are identical. Thus 1 we have a 
single approximation for both highlight and shadow dots 1 of 
several shapes. 

The "intercept" term in Equation (23> 1 c 1 has been found 1 
by experimentation, to be not significantly different from 
zero, It would appear that Equation <23) is not only an 
approximation to Equations C12) - <191 1 but it actually 
represents a reconciliation of the models from which these 
equations are derived. 

If JJe stipulate that the "intercept" term, c 1 in Equation 
(23) is 1 in fact, zero, we have Equation (1) (the GRL Dot 
Gain Model) 1vith g = 26. In fact, it is desirable to use6 
as a parameter, rather than g 1 because it has particular 
significance <i.e., it represents the gain at af = 0 150>. 

EXPERIMENTAL VERIFICATION OF THE MODEL: 

On-press testing was used to verify the GRL Dot Gain model 
involving two transfers, given in Equations (9) and C10l, 

Test Targgt- A test target VIas prepared for these tests. 
A hard-dot halftone image ~as produced by contacting a 
step-~ise exposed halftone film onto contact lith filM. 
This hard-dot target contained 9 steps 1 plus clear and 
solid steps. 

The halftone dot areas of these steps were measured with a 
Tobias PCT Dot Area Meter. These dot areas are recorded in 
Table 1. 

Also included ~as a solid patch, a gray bar 1 a GATF Star 
Tarqet 1 and the first 10 steps of a 21-step transmission 
qui de. 

On-Press Tes!inq- The test form was printed on a 
Heidelberg KORA lithographic offset press. Sixteen sheets 
were selected at random intervals from the run. The inking 
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level ~as purposely varied throughout the run to produce 
different dot gain curves for each sheet. 

SteP. Dot A1•ea 
1 0 189 <shadoro> 
2 0,81 
3 0,72 
4 0,64 
5 0,51 
6 0,34 
7 0,23 
8 0,13 
9 o,os (highlight) 

TABLE 1. 
Dot Areas of the Test Target. 

The densities above paper of each patch from each sheet 
sampled were recorded, as well as the Solid InK Density 
<SID>. These densities ~ere converted into dot areas on 
the paper via the Yule-Nielsen equation, with an n-value of 
1 17 1 IQhich is recommended for genera 1 conditions,!. 

The dot gain for each step roas calculated for each step by 
subtracting the target dot areas on film from the dot areas 
on paper. The para111eter for qain on the plate 1 6d 1 ~1as 
estimated for each sheet sampled by determining the dot 
area on fil111 that produced the greatest amount of gain <by 
quadratic interpolation>, and applying Equation <11>. 

The weighted-least-squares solution for the gain on the 
paper, ~p, was estin1ated for each sheet sampled as per 
Equation <7>. These estimates for each sheet sampled are 
given in Table 2. The ANOVA Summary is given in Table 3. 
Note that the overall value of r-squared, over 96~ 1 
indicates an excellent fit of the model to the data. 

A problem arose roith the estimation of the critical 
printing area avf. The ~nodel predicted values lower than 
those predicted by the Yule-Nielsen Equation. 
Photomicrographs reveal that the tints filled in before the 
Solid InK Density was reached. This effect has been 
attributed to the spread of the inK film on the paper, 
producing a greater dot area, but a thinner ink film in 
tinted areas. In other words, the density of the dots on 
paper which ~ade up the tints was lower than the density of 
the solid. 
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"' A 

Sheet • SID AL _4_p_ 
143 1,04 0,17 o,o9 
155 1,12 -0,01 0,26 
166 1,14 -0,01 0,27 
178 1,16 -0,01 0,27 
190 1,16 0,17 0,13 
202 1,18 0,17 0,15 
213 1,14 0,16 0,18 
220 1,14 0,16 0,21 
226 1,14 0,17 0,16 
234 1,11 0,17 0,13 
241 1,09 -0,01 0,30 
246 1,11 0,17 0,14 
252 1,09 0,17 0,15 
258 1,14 0,17 0,12 
264 1,14 0,17 0,11 
269 1,03 0,16 0,19 

TABLE 2. 
Solid InK Densi~ies and Paraa~eter Estimates 

Solll'Ce s.s. DF M.S. 
Total 3,7935 127 
.0 p, 143 0,0560 1 
'-lp, 155 0,4580 1 
~p, 178 0,4698 1 
Clp, 190 0,1122 1 
.6p 1 202 0,1516 1 
6p, 213 0,2183 1 
6p, 220 0,2563 1 
.cp, 234 0,1065 1 
~p, 241 0,6061 1 
6p' 246 0,1197 1 
~p, 252 0,0854 1 
.l::>p t 258 0,0934 1 
Ap 1 264 0,0761 1 
hp, 269 0,2271 1 

Regression 3,6640 16 0,2290 
Residual 0,1295 111 0,00117 

R-Square = 0 1965 

TABLE 3. 
ANOVA Sumn1ary, 
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FOR FURTHER INVESTIGATION 

1. A better estimate for the non-linear parameter, ~d, is 
needed. The approximation given in this paper seems to 
~ork fairly ~ell in Most cases. However, it seems that a 
much 11ore precise estimate is possible. 

2. Through non-linear regression, it is possible to obtain 
least-squares estimates of the Yule-Nielsen n-value, as 
~ell as the two gain parameters. An extensive model is 
being developed for the Plate/Press Characteristic, ruith 
solid inK density and screen ruling, in addition to the dot 
area on filM, as inputs to the equation. 
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