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Abstract: This work follows the work of Engstrom and 
Rosenberg. An efficient, iterative algorithm based on 
'dynamic programming' concepts bas been developed which 
minimizes both planning time and raw materials expended 
producing "gang runs" on printing press equipment. A 
computer program bas been developed from that algorithm 
which will produce satisfactory results, in an acceptable 
period of time, for a large number of the gang run situa
tions [which] a printing shop would experience. 

'Background 

Engstrom and Rosenberg stated that there was no 
generally-accepted single technique for resolving the gang 
run problem; they developed an algorithm for resolving it. 
They stated that "by using this algorithm, an operator can 
write a program to run on a small table top calculator with 
lK storage or a micro, mini, or general purpose computer." 
Since that article was published [in 1976], major changes 
have occurred in the economics of computing. Given that 
fact, Rosenberg decided to re-examine the problem. The 
purpose was to develop an algorithm which could be imple
mented cost-effectively, utilizing recently developed, 
state-of-the-art microcomputer technology. 

Statement of the Problem 

Basically, the problem is to distribute a variable 
number of jobs -- each of which requires a different length 
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of runs -- over one or more plates so that the total cost 
for all the jobs is minimized. 

Data Requirements 

The following data are required: 
1) the number of jobs to be printed ["total number of 

jobs"]; 
2) the length of runs for each of the different jobs 

["length of runs"]; 
3) the number of images on each plate ["number of images 

per plate"]; 
4) the 'makeready' cost for each plate [''makeready cost 

per plate"] ; 
5) the cost of paper per press-sized sheet ["paper cost"]. 

Algorithm Development 

Thorough analysis of a general form of the problem in
dicates that the basic problem solution to minimize costs, 
in general, follows the logic stated in the algorithm below. 
[Note that the algorithm is ~ a direct extension of the 
algorithm developed by Engstrom and Rosenberg. The algo
rithm developed in the present work is the result of a 
complete re-analysis of the problem.] Immediately after the 
algorithm, an example problem is given. By studying the 
calculations performed at each step of the algorithm for the 
example problem, you will see how the logic of the algorithm 
is operationalized. 

1) For any "given total number of plates," calculate the 
"total number of images" available on the plates; 

set the value of the "total number of images" to the 
value of the "given total number of plates" times the 
value of the "number of images per plate." 

2) Calculate the number of "'surplus' images" available 
on the "given total number of plates": 

set the value of the "number of surplus images'' to 
the value of the "total number of images" minus the 
value of the "total number of jobs." 

3) Create a list (an array) of the "length of runs" of 
the different jobs. 

4) Put the list (the array) of the "length of runs" of 
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the different jobs in descending order. I.e., the job 
with the highest "length of runs" is first • • • the 
job with the lowest "length of runs" is last. 

5) Save the list (the array) created in step 4) as the 
"original sorted list of length of runs." 

CO~IT: Steps 6) through 21) generate the first 
possible solution to the problem: 

6) Set the value of "divisor-!" to the value of the 
"number of surplus images" plus one. 

COMMENT: Steps 7) through 10) 
list of length of runs" 
"total number of images" 
number of plates." 

will make the "sorted 
equal in length to the 
available on the "total 

7) Divide the "length of runs" of the first job [the job 
with the highest length of runsJ by (the "number of 
surplus images" plus one): 

set the value of the "quotient" to the value of the 
"length of runs of first job" divided by the value of 
"divisor-1." 

8) If the number in "quotient" is not a whole number -
i.e., there are decimal places in the quotient-- round 
the number in "quotient" ~ to the next highest 
number. 

9) Replace the "length of runs" of the first job (in the 
"sorted list of length of runs'') with the "quotient" 
from step 7); 

e.g.: if the value of "quotient" were 1250 and 
the value of the first ''length of runs" (in the 
"sorted list of length of runs") were 5000, the 
number 1250 would replace the number 5000 as the 
first "length of runs" in the "sorted list of 
length of runs." 

10) Add the number in "quotient" to the list (the array) 
of the "length of runs" "number of surplus images"
times; 
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1250 would be added to the "sorted list of length 
of runs" 3 times. 

11) Put the new list (a second array) of the "length of 
runs'' ofthe different jobs [created in steps 9) and 
10)] in descending order. 

This is then the "new sorted list of length of runs.'' 

COVMENT: Steps 12) through 21) calculate the cost of 
this possible solution as follows: 

12) Set the "total cost" to $0.00. 

Cm!MENT: Steps 13) through 19) calculate the cost of 
paper for this possible solution: 

13) Set "list number-1" to 0 (zero) minus the "number of 
images per plate": 

e.g.: if the "number of images per plate" were 4, 
"list number-1" would be set to 0 - 4. 

14) Set "counter-1" to 0. 

15) Add 1 (one) to "counter-1." 

16) Set "list number-2" 
(''counter-1" times 
plus one; 

to "list number-1" plus 
"number of images per plate") 

CO"'MENT: The number in "list number-2" specifies which 
one of the list of ''length of runs" (in the 
second array) will be used in the following steps; 

e.g.: if ''list number-2" were set to R in step 
16), the 8th i.tem in the ''new sorted list of length 
of runs" (the second array) would be used in the 
following steps. 

17) Multiply the ''length of runs" specified in the "new 
sorted list of length of runs" (the second array) by 
"list number-2" times "paper cost": 

"cost-1" = ["length of runs" ("list number-2'')] X 
"paper cost.'' 

lR) Calculate "total cost" as a 'running subtotal': 
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set the "total cost" to the "total cost" plus 
"cost-1." 

19a) If "counter-1" is not equal to the 
number of plates," then go to step 

"given total 
15); 

19b) • • • if "counter-1" is equal to the "given total 
number of plates," then go on to step 20). 

20) Calculate total makeready costs: 

set "cost-2" to the "makeready cost per plate" 
times the "given total number of plates." 

21) Calculate "total cost": 

set the "total cost" to the "total cost" plus 
"cost-2." 

22) Save the "new sorted list of length of runs" (the 
second array), "total cost," and the "given total 
number of plates'' as the "lowest total cost solu
tion." 

23) Calculate next possible solution 

Example Problem 

The data for the example problem are as follows: 

NUMBER OF JOBS TO RUN: 
NUMBER OF IMAGES PER PLATE: 
'MAKEREADY' COST OF PLATE: 
COST OF PAPER PER SHEF.T: 

LENGTH OF RUNS OF JOB 1: 
LENGTH OF RUNS OF JOB 2 : 
LENGTH OF RUNS OF JOB 3: 
LENGTH OF RUNS OF JOB 4 : 
LENGTil OF RUNS OF JOB 5 : 
LENGTH OF RUNS OF JO'B 6 : 

6 
4 

$50.00 
$00.50 

5,000 
2,500 
7,500 

15,000 
10,000 
1,000 

For the example problem, assume that the "given total 
number of plates" is 3. Therefore: 

1) "Total number of images" • 3 X 4 • 12. 

2) "Number of surplus images'' • 12 - 6 • 6. 
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1) The original [unsorted] list of "length of runs" is: 

5,000 
2,500 
7,500 

15,000 
10,000 
1,000 

[JOB 1] 
[JOB 2] 
[JOB 3) 
[JOB 4] 
[JOB 5] 
[JOB 6] 

4) The "sorted list of length of runs" [sorted in 
descending order] is: 

15,000 [JOB 4] 
10,000 [JOB 5] 

7,500 [JOB 3] 
5,000 [JOB 1] 
2, 500 [JOB 2] 
1,000 [JOB 61. 

6) "Divisor-!'' • 6 + 1 • 7. 

7) "Quotient" • 15,000 I 7 • 2,142.8571. 

8) Since the "quotient" does have decimal places in it, 
round the "quotient'' ~ to 2 ,143. 

9) Replace the "length of runs" of the first job (in the 
"sorted list of length of runs") with the "quotient" 
from step R): 

15.000 -~ 21143 [JOB 4] 
10,000 -~ 10,000 [JOB 5] 

7,500 -~ 7,500 [JOB 31 
5,000 -~ 5,000 [JOB 1] 
2,500 --> 2,500 [JOB 2] 
1,000 -~ 1,000 [JOB 6]. 

10) Add "quotient" to the "sorted list of lenp:th of 
runs" "number of surplus images"-times: 

["number of surplus images" - 6] 

2,143 -..;,. 2,143 [JOB 4] 
10,000 -~ 10,000 [JOB 51 

7,500 -~ 7,500 [JOB 3] 
5,000 -> 5,000 [JOB 1] 
2,500 -~ 2,500 [JOB 2] 
1,000 -~ 1,000 [JOB 6] 

2 1143 [JOB 4] -- once 
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2,143 
2,143 
2,143 
2,143 
2,143 

(JOB 4] 
[JOB 4] 
[JOB 4] 
[JOB 4] 
{JOB 4] 

twice -
three times-
four times -
five times -
six times 

11) Put the new list of the "length of runs" of the 
different jobs [created in steps 9) and 10)] in 
descending order: 

10,000 
7,500 
5,000 
2,500 
2,143 
2,143 
2,143 
2,143 
2,143 
2,143 
2,143 
1,000 

["length of runs"(l)] 
["length of runs"(2)] 
["length of runs"(3)! 
[''length of runs" ( 4) ] 
["length of runs"(5)J 
["length of runs"(6)] 
("length of runs"(7)] 
["length of runs" (8)] 
("length of runs"(9)] 
["length of runs"(lO)] 
["length of runs'' (11) J 
["length of runs"(l2)J 

[JOB 5] 
[JOB 3] 
[JOB 1] 
[JOB 2] 
[JOB 4J 
[JOB 4] 
[JOB 4) 
[JOB 4] 
[JOB 4] 
[JOB 4] 
[JOB 4] 
(JOB 6]. 

This is the "new sorted list of length of runsn (the 
second array).---

12) "Total cost" • $0.00. 

13) ''List number-1" = 0 - 4 = -4. 

14) "Counter-1" • 0. 

15) Add 1 (one) to "counter-1'': 0 + 1 • 1. 

16) "List number-2" = -4 + (1 X 4) + 1 .,. 1. 

17) Multiply the "length of runs" specified in the "new 
sorted list of lenp.th of runs'' (the second array) by 
"list number-2" times "paper cost": 

COMMENT: At this point: 
["length of runs" (list number-2'') 1 corresponds to 
["length of runs"(l)] because f!list number-2" 
is equal to 1; 
["length of runs"(l)] is equal to 10,000. 

"cost-1" • 10,000 X $0.50 • $5,000.00 

18) Calculate "total cost" as a 'running subtotal': 
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"total cost" • $0.00 + ss,ooo.oo .. S.5,ooo.on 

19) "Counter-1" • 1, which is less than the "given total 
number of plates," which is 3; repeat steps lli) 
through 18). 

15) Add 1 (one) to ''counter-!'': 1 + 1 • 2. 

16) "List number-2" = -4 + (2 X 4) + 1 • 5. 

17) ~1tiply the ''len~th of runs'' specified in the "new 
sorted list of length of runs'' (the second array) by 
"list number-2" times "paper cost": 

COMMENT: At this point: 
["length of runs'' ("list number-2") J corresponds to 
["length of runs''(c;)1 because "list number-2'' 
is equal to 5; 
["length of runs"(S)J • 2,143. 

"cost-1" = 2,143 x S0.50 • t,l,071.50. 

18) Calculate "total cost" as a 'running subtotal': 

"total cost'' = $5,000.00 + $1,071.50 .. $6,071.50. 

19) "Counter-1" = 2, which is less than the ''given total 
number of plates," which is 3; repeat steps 15) 
through 18). 

15) Add 1 (one) to "counter-1": 2 + 1 • 3. 

16) "List number-2" = -4 + (3 Y. 4) + 1 • 9. 

17) Multiply the "length of runs" specified in the "new 
sorted list of length of runs'' (the second array) by 
"list number-2" times "paper cost": 

COMMIDTT: At this point: 
[''length of runs" ("list number-2")) corresponds 
to ["length of runs" (9)) because ''list number-2" 
is equal to 9; 
["length of runs"(9)] • 2,143. 

"cost-1" "" 2,143 x $0.50 • $1,071.50. 

18) Calculate "total cost" as a 'running subtotal': 
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"total cost" • $6,071.50 + $1,071.50 = $7,143.00. 

19) "Counter-1" • 3, which is equal to the "ziven total 
number of plates," which is 3; go to step 20). 

20) Calculate total makeready costs: 

"cost-2" = $50.00 X 3 • $150.00. 

21) Calculate "total cost": 

22) 

"total cost" • $7,143.00 + $150.00 • $7,293.00. 

Save the "new sorted list of length of runs," "total 
cost," and--" given total number of plates" as the 
"lowest total cost solution." 

In step 22) the data for this possible solution to 
the problem are stored as the "lowest total cost solution.'' 
These data are then compared with the "total cost" data 
for the second, and succeeding, possible solutions. When a 
solution with a lower "total cost" is found, the data 
saved as the "lowest total cost solution" are updated. At 
the end of the process -- when the "total cost" for all 
possible solutions for the "given total number of plates" 
has been calculated -- the data saved as the "lowest total 
cost solution" will be the "overall lowest total cost 
solution" for the "given total number of plates." 

The above algorithm applies only to the first of all 
the possible solutions for a specific "given total number 
of plates." Calculation of the second, and succeeding, 
possible solutions requires some modification to, and exten
sion of, the algorithm. 

The logic for calculating the second possible solution 
is as follows: 

Al) Subtract one from the divisor of the "length of runs" 
of the first job [the job with the highest length of 
runs]: 

set "divisor-1" to "divisor-1" minus one. 

A2) Establish "divisor-2" as the divisor of the "number 
of runs" of the second job (the job with the second 
highest length of runs): 
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set 
plus 

''divisor-1" 
2) minus 

to (the "number of surplus imar,es'' 
"divisor-1." 



A3) If "divisor-2" 
then go to step 

is not greater than or equal to 
Al)-.-

2, 

COMMENT: For each possible solution, every divisor must be 
greater than or equal to 2. A divisor of 1 does 
not distribute one job over more than one image on 
the plate. 

IMPORTANT NOTE: Step A4) determines whether or not this 
iteration of the algorithm provides a 
"valid" problem solution. A "valid" solu
tion is defined (for this problem) as one 
in which the sum of the values in all the 
"divisors" 
equals the 

minus the "number of divisors" 
"number of surplus images." 

A4) If ("divisor-1" 
greater than the 
to step Al); 

plus "divisor-2" minus 2) is 
"number of surplus images," then go 

If ("divisor-1" plus "divisor-2" 
to the "number of surplus images," 
AS). 

minus 2) is equal 
proceed to step 

IMPORTANT NOTE: If ("divisor-1" plus "divisor-2" minus 
2) is less than the "number of surplus 
images," this iteration of the algorithm 
does not provide a valid problem solution; 
if that is the case, an extension of these 
steps is required. 

AS) Using the "original sorted list of length of runs," 
(the first array) repeat steps 6) through 10). 

A6) [After repeating steps 6) through 10), then:] in 
steps 6) through 10), where '"length of runs" of 
the first job' occurs, substitute "'length of runs" 
of the second job' [the job with the second highest 
length of runs] for it. 

A7) Repeat steps 6) through 10) again. 

AB) Repeat steps 11) through 22). 

To formulate a general algorithm, it is 
identify the repeating patterns that develop 
iterations of the problem-solving process). 
identify those patterns, the logic required 
third possible solution will be detailed: 

crucial to 
(in successive 
To help clearly 

to generate a 
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Bl) Subtract one from the divisor of the "length of runs" 
of the first job [the job with the highest length of 
runs]: 

set "divisor-1" to "divisor-1" minus 1. 

B2) Subtract one from the divisor of the "length of runs" 
of the second job [the job with the second highest 
number of runs] : 

B3) 

set "divisor-2" to "divisor-2" minus 1. 

If "divisor-2" 
then go to step 

is not greater than or equal to 
Bl)-.-

2, 

B4) Establish "divisor-3" as the divisor of the "number 
of runs" of the third job [the job with the third 
highest length of runs]: 

BS) 

set 
plus 

"divisor-3" 
3) minus 

If "divisor-3" 
then go to step 

to (the "number of surplus images" 
"divisor-1" minus "divisor-2." 

is not greater than or equal to 
~2)-.-

2, 

IMPORTANT NOTE: Step B6) determines whether or not this 
iteration of the algorithm provides a 
"valid" problem solution. 

B6) If ("divisor-1" plus "divisor-2" plus "divisor-3" 
minus 3) is greater than the "number of surplus 
images," then go to step B2); 

If ("divisor-!" plus "divisor-2" plus "divisor-3" 
minus 3) is equal to the "number of surplus images," 
then proceed to step ~7). 

IMPORTANT NOTE: If ("divisor-1" plus "divisor-2" plus 
"divisor-3" minus 3) is less than the 
"number of surplus images," this iteration 
of the algorithm does not provide a valid 
problem solution; if that is the case, an 
extension of these steps is required. 

B7) Repeat the logic of steps AS) through A7). 

B8) 
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of the third job' [the job with the third highest 
length of runs] for it. 

B9) Repeat steps 6) through 10) again. 

BlO) Repeat steps 11) through 22). 

The logic detailed so far must be further extended to 
generate every possible combination of values for the 
"divisors" that satisfies the formula: 

("divisor-1" minus one) [. • • plus ("divisor-2" minus 
one) [ ••• plus "divisor-("number of jobs") minus 
one)] ] equals the "number of surplus images." 

Performance Tests of the Algorithm 

The algorithm is still not elaborated completely enough 
to write a 'finished' computer program [directly from it] 
which accounts for all considerations implied in the origi
nal problem. But it is a correct algorithm from which a 
computer program can be developed. A test program based on 
this algorithm was written in Microsoft Corp.'s compiler 
version of the BASIC programming language. l.-rhen that pro-· 
gram was executed on an IBM-PC computer, a serious problem 
with it became apparent rather quickly: as the number of 
jobs increases, and/or as the number of images per plate 
increases, it takes proportionately longer and longer to 
generate the solution. Unfortunately, this is inherent with 
problem solutions based on 'dynamic programming' concepts. 

In test runs of the program, the number of possible 
solutions actually tested to determine if they were "valid" 
solutions -- solutions which satisfied the formula given 
above -- was 63. The number of valid possible solutions 
found was 32. But, of course, simply testing all the pos
sible solutions for 3 plates does not generate the final 
problem solution. The problem is to find the lowest possible 
total cost for all jobs -- and finding it requires that all 
solutions be checked for 2 plates, for 4 plates, for 5 
plates, • • • and so on. 

For 4 plates the number of possible solutions tested 
for validity was 847. The number of valid possible solu
tions was 382. For 5 plates, the total number of possible 
solutions tested for validity was 6,475 and the number of 
valid possible solutions was 2,380. 

To summarize: in the logic developed so far, each of 
the possible solutions must be checked to determine if it is 
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a valid solution. Moreover, as you would expect, as the 
number of possible solutions increases, the number of valid 
solutions (generally) also increases in absolute terms. 

The logic for each valid solution requires: 1) divid
ing some of the values of the "length of runs" in the 
"list of length of runs"; 2) modifying the "length of runs" 
of some of the jobs [those that were divided] in the "list 
of length of runs"; 3) adding values to the "list of length 
of runs"; 4) sorting the new "list of length of runs" into 
descending order; and 5) finding the cost of that solution. 
Each of those operations particularly the sort operation--
is time consuming. 

In short, it was found that the algorithm is ineffi
cient. Even when its procedures are performed by a computer 
it will not generate the desired result in an acceptable 
period of time. That is true, at least, for many of the 
gang run situations [which] a printing shop would experience. 

Modifications to the Algorithm 

Further analysis indicated several modifications which 
could be made to the logic of the algorithm. Those modifi
cations substantially reduce the number of possible solu
tions which have to be tested for validity while the 
algorithm still generates a 'satisfactory' result. 

For example, an analysis of a 'worst possible case' 
scenario suggested changes which reduced the number of pos
sible solutions to be checked. 

A 'worst possible solution' would be: simply make as 
many plates as there are jobs. For each job, make a plate 
with as many "up" as there are images on the plate. At 
least that divides the "length of runs" of each job by the 
"number of images" per plate. If paper is relatively ex
pensive per sheet and the makeready cost is relatively low 
per plate, that approach (presumably) results in an overall 
savings due to reduced paper cost. Of course, the savings 
in paper cost would be offset to some greater or lesser 
degree by the makeready cost for each additional plate. 

But of more importance to the present work -- in terms 
of the development of the algorithm -- the 'worst possible 
case' dictated a revised procedure for setting the initial 
values of the "divisors." The advantage of the revised 
procedure is that the algorithm does not test possible 
solutions for which any "divisor" has a value higher than 
the number of possible solutions tested for validity. 
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Steps 1) through 5) of the logic for generating the 
first possible solution for any "given total number of 
plates" remain the same as described above. But step 6) 
is divided into two steps as follows: 

6a) Set "divisor-!" to the "number of surplus images" 
plus one. 

6b) If "divisor-!" is greater than the "number of images 
per plate," set "divisor-!" equal to the "number of 
images per plate." 

Steps 7) through 22) remain the same. 

The logic for calculating the second possible solution 
is as follows: 

Cl) Subtract one from the divisor of the "length of runs" 
of the first job [the job with the highest length of 
runs]: 

set "divisor-!" to "divisor-!" minus one. 

C2) Establish "divisor-2" as the divisor of the "number 
of runs" of the second job [the job with the second 
highest length of runs]: 

set 
plus 

"divisor-2" 
2) minus 

to the ("number of surplus images" 
"divisor-1." 

C3) If "divisor-2" is greater than the "number of images 
per plate" set "divisor-2" equal to the "number of 
images per plate." 

C4) If "divisor-2" 
then go to step 

is not greater than or equal to 
Cl). 

2, 

IMPORTANT NOTE: Step CS) determines whether or not this 
iteration of the algorithm provides a 
"valid" problem solutlon. A "valid" 
solution is defined (for this problem) as 
one in which the sum of the values in all 
the "divisors" minus the "number of 
divisors" equals the "number of surplus 
images." 

CS) If ("divisor-1" 
greater than the 
go to step Cl); 

plus "divisor-2" minus 2) is 
"number of surplus images," then 
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If ("divisor-1" plus "divisor-2" minus 2) is 
equal to the "number of surplus images," proceed to 
step C6). 

IMPORTANT NOTE: If ("divisor-!" plus "divisor-2" minus 
2) is less than the "number of surplus 
images," this iteration of the algorithm 
does not provide a valid problem solution; 
if that is the case, an extension of these 
steps is required. 

C6) Go to step AS). 

Those modifications dramatically reduce the number of 
possible solutions tested. As with the original algorithm, 
a test program was written from this algorithm. It produced 
the following results: for 3 plates, the number of possible 
solutions tested for validity was 51; the number of valid 
possible solutions was 24. For 5 plates, the number of 
possible solutions was 1013; the number of valid possible 
solutions was 95. Compare that to the figures for the 
original algorithm: for 5 plates, the number of possible 
solutions tested for validity was 6,475 and the number of 
valid possible solutions was 2,380. 

To assure that both the algorithm and program work 
correctly, a test was run with the "given total number of 
plates" set to 6 -- the 'worst possible case' solution for 
the example problem. The number of valid possible solutions 
was 1 -- exactly correct. 

As suggested above, several additional modifications 
have been made to the logic of the algorithm(s) which 
further reduce the number of possible solutions which are 
tested for validity. 

As work continued on the problem and additional changes 
were made to the logic of the algorithm, test programs 
were written from the different versions of the algorithm. 
Those test programs were run to determine whether or not the 
changes made might actually eliminate the best possible 
solution from consideration -- obviously an unacceptable 
effect. 

The acid test was to compare the "overall lowest total 
cost solution" generated by the computer program with the 
best lowest total cost solution an 'experienced printing 
professional' could calculate 'by hand.' This was done with 
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numerous different sets of data. Data sets were tested 
which had fewer "number of jobs" than "number of images 
per plate." Data sets were tested in which the "number of 
jobs" was greater than the "number of images per plate." 
And data sets with equal "number of jobs" and "number of 
images per plate" were tested. In every case, the computer 
program equaled or bettered the solution calculated by hand. 

Just as important, the computer program developed from 
the algorithm does produce 'satisfactory' results in an 
acceptable period of time (for a large number of the gang 
run situations [which] a printing shop would experience). 

Two 'benchmark' runs that were done to evaluate the 
performance of both the algorithm and the program developed 
from it follow: 

First, for the example problem shown previously, the 
program produced the overall lowest total cost solution in 
39 seconds, including the time that it took to key-in the 
data. The actual run time the program took to calculate the 
solution was 6 seconds. 

Before giving the data concerning the performance of 
the second benchmark run, it needs to be pointed out again 
that the algorithm employs an iterative, 'dynamic program
ming' approach to produce the solution. Because of that, as 
the number of jobs increases, and/or as the number of images 
per plate increases, the program does take longer and longer 
to generate the solution. ----

For the second benchmark the number of jobs was 8, the 
number of images per plate was 8, the makeready cost per 
plate was $200.00, and the cost of paper per sheet was $0.35. 
The program took 17 minutes and 33 seconds to produce its 
lowest total cost solution; the experienced printing pro
fessional took about 16 minutes to produce his lowest total 
cost solution. However, the solution produced by the pro
gram was $4,387.20, the solution produced by hand was 
$4,455.25 -- a difference of $68.05. 

After careful evaluation of the performance of the 
program based on the agorithm developed above, it may be 
concluded that the savings which can be achieved by using it 
are significant enough to warrant its use. That conclusion 
applies even for gang run situations in which higher numbers 
of jobs and/or higher numbers of images per plate do in
crease the run time of the program. 
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One final comment must be made: the work done indi
cates that it is imperative that the program be written in 
a programming language that can be compiled: COBOL, Pascal, 
Compiler BASIC, etc. If the program is written using the 
interpreter version of BASIC that is built into most micro
computers on the market today, it will not execute quickly 
enough to produce the lowest cost solution in an acceptable 
period of time. 

462 



Literature Cited 

Engstrom, Patricia M. and Rosenberg, Stanford H. 
1976. "A Heuristic Approach to Cost-Minimization of 

Multiple-Image Printing," TAGA Proceedings 
1976, pp. 323-30. 

463 




