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When printing color on newsprint the ink-trap calculations often produce numbers 
that are much lower than expected. However, the color overprints look better than 
the numbers would indicate. This paper presents an analysis of the GATF ink-trap 
formula which accounts for the lower trap values and provides a modified formula 
based on more realistic assumptions about reflection densities. 

Before introducing the modified formula, let's take a look at the standard GATF 
ink-trap calculation currently in use. There are three important factors to look at to 
understand the situation; the definition of ink-trap, any assumption(s) about reflec
tion density, and the method of ink-trap calculation. 

The definition of ink-trap most commonly in use is as follows: 

OBSERVED INK-LAYER THICKNESS 
{1} TRAP = 100 • 

EXPECTED INK-LAYER THICKNESS 

This definition indicates that the purpose of an ink-trap measurement is to tell us 
about the relative amount of ink transferred to paper. It is NOT an indicator of light 
absorbed, light reflected, or color appearance of the printed patches. 

A fundamental assumption underlying the standard calculation of ink-trap is that 
reflection density is directly proportional to ink-layer thickness. This assumption 
can be expressed equivalently by the statement that reflection densities are addi
tive: 

{2} Dyz = Dy + Dz (Additivity) 

where Dy and Dz are any two component densities, 
and Dyz is the resultant density. 

This assumption allows us to link "ink-layer thickness" to "reflection density" 
which is easier to measure. As a result, we can convert our definition into a formu
la for calculation. 
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The standard method of calculation is as follows: 

{3} TRAP = 100 • 

where D210 
D20 
D10 
Do 

D210- D1o 

D20- Do 

density of two-color patch on paper 
density of 2nd ink on paper 
density of 1st ink on paper 
density of paper 

Nobody should be surprised to hear that equation {2} isn't really true, although 
the discrepancies are often slight. This is especially true if the densities are small 
and the printable density range is long. BUT, if the printable density range is short 
AND the densities involved are moderate or high, additivity failure is significant. 

OK, so what? What does this have to do with ink-trap? The problem is this. If we 
assume that additivity holds, then we also assume that any reduction in total densi
ty must be caused by a failure to transfer a full measure of ink. This means that 
whenever additivity failure occurs, the ink-trap percentages suffer the conse
quences. What we need to do is to find a more reasonable assumption about how 
densities add, and then derive a corresponding formula for calculating ink-trap. No
tice, we are NOT changing the definition of ink-trap. We are simply attempting to 
refine the assumptions and approximations which surround the calculation of ink
trap from available data. 

Fortunately, it is easy to find a replacement for the additivity assumption. Yule [1) 
presented such a density relationship twenty years ago. Suppose we modify our 
assumption about additivity as follows: 

{4} 
Dv• Dz 

(Sub-additivity) 
Dm 

where Dm = maximum printable density for the given substrate. 

For example, if Dm were estimated at 1.5 (for newsprint, say) and the two inks had 
individual densities of 1.0 and 0.8, then the expected density of the two-color over
print would be 1.27 (by equation {4}) instead of 1.8 (by equation {2}). While it can 
be argued that 1.5 is or is not the maximum printable density on newsprint, I would 
hope that anyone would accept 1.27 instead of 1.8 as a better estimate of the total 
density in this case. 

On the basis of equation {4}, we can derive a modified formula for computing an 
ink-trap percentage. The details of this derivation are presented in the appendix, 
but the resultant formula is as follows: 

log (1 
D210- D10) + 
Dm- D210 

{5} TRAP 100 • 

log (1 
D20- Do ) + 
Dm- D20 
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This formula is clearly more complicated than equation {3}, but it should be be
cause it corresponds to a more complicated (and more realistic) assumption about 
density additivity. 

Let's take a look at a couple of examples. Suppose our laydown order is CMYK 
and we estimate Om to be 1.5 as in the earlier newsprint example. Consider first 
the trapping of yellow over cyan: 

EXAMPLE #1 Blue 
Density 

0 210 = Green 0.90 
020 = Yellow 0.85 
0 10 = Cyan 0.34 
0 0 = Paper 0.23 

Standard trap calculation 90% 
Newsprint trap calculation 98% 

The difference is not that great. This, in part, is caused by the relatively low density 
of the cyan. Consider now the trapping of the yellow over magenta: 

EXAMPLE #2 Blue 
Density 

0 210 =Red 1.12 
0 20 = Yellow 0.85 
0 10 = Magenta 0.89 
0 0 = Paper 0.23 

Standard trap calculation 37% 
Newsprint trap calculation 71% 

Here the difference is much more striking. Also, notice how high the density of the 
magenta is. If you are assuming that densities are additive, you would be expecting 
the red density ideally to be 1.74 (the sum of 0.85 and 0.89). Naturally, the actual 
density of 1.12 falls considerably short of this value and the trap value of 37 per
cent indicates this tact. On the other hand, if you are assuming sub-additivity (as in 
equation {4}), the total density for the red patch comes out at 1.24 with perfect trap. 
In this case, the actual density of 1.12 still falls short, as indicated by the newsprint 
trap value of 71 percent, but with much less severity than before. 

It is interesting to notice that the key difference between examples 1 and 2 is the 
density of the first ink down. It is the high blue density of the magenta (0.89) which 
brings the issue of sub-additivity into play. From this we can see that other ink 
problems, such as contamination, can have an adverse effect on our calculation of 
ink-trap unless we take sub-additivity into account. After all, the color of an ink 
should have nothing to do with our measurement of how much of that ink is trans
ferred. 
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We now turn our attention to an interesting property of the newsprint trap formu
la which has to do with letting the value of Dm grow without bound: 

as Dm gets larger and larger ... 

Dy•Dz 
gets closer and closer to zero. 

Dm 

When this happens, equations {2} and {4} become more and more similar until fi
nally there is no difference. This means that when the maximum printable density 
becomes very large (say a density greater than 5.0) the issue of sub-additivity 
ceases to exist. It can also be shown that: 

as Dm gets larger and larger .. 

gets closer and closer 

to 
D210- D,o 

D20- Do 

Thus, as the additivity assumption is restored, the newsprint formula reduces to the 
standard formula. 

An interesting situation now presents itself. Using the standard ink-trap formula 
is EQUIVALENT to using the newsprint ink-trap formula with the claim that our 
maximum printable density is greater than 5. In a sense, by using the standard for
mula, we are ALREADY using the newsprint trap formula, it's just that we have an 
unrealistic estimate for Dm. So, if one thinks that his maximum printable density is 
not greater than 5 and that reflection densities do exhibit additivity failure, then one 
should consider using the newsprint trap formula with more reasonable estimates 
for Dm. One would think that reasonable values for Dm might range between 1.5 and 
2.5 or so depending on the quality of the inks and the paper stock. The most appro
priate value for Dm is clearly an arguable point and undoubtedly depends on a 
number of factors which need experimental investigation. 

In conclusion, we have seen that density additivity is a key assumption which un
derlies the standard ink-trap formula. Furthermore, under that assumption, any 
sub-additivity is incorrectly reported as poor ink tranfer. Thus, in situations with sig
nificant sub-additivity such as printing color on newsprint or perhaps when ink con
tamination occurs, the standard trap values are much lower than they should be. 
By modifying the additivity assumption to include some sub-additivity, we have de
rived a modified trap formula (called the newsprint formula) which takes the maxi
mum printable density into account. When additivity failure is significant, the news
print formula gives more realistic trap percentages, and when additivity failure is 
not significant, the two trap formulas agree. 
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APPENDIX 

The following derivation is based solely on equation (8.06) in Yule [1]. Accordingly, 
whenever there is a maximum reflection density Dm, one can not simply add up 
component densities to find the overall density. Rather, one must "add" densities 
based on how close the component densities come to the maximum. For the com
bination of just two densities, Yule's equation simplifies to: 

{6} Dvz = Dy + Oz -
Dv• Dz 

which was already presented earlier as equation {4}. 

Notice that the amount being subtracted from the initial sum increases as the 
component densities increase relative to Dm. Thus, if Dy were already equal to Dm• 
the resultant value of Dvz would also be Dm regardless of the value of o •. 

We begin by introducing the term "intrinsic density" which we define as the den
sity or density component associated with some specific material used in forming 
an image. For example, the intrinsic density of an ink-layer is the density compo
nent associated with just the ink itself and not the paper It is printed on. While such 
densities can't be directly measured, they provide convenient intermediate quanti
ties to be calculated in the following derivation. 

We will now use our own equation {6} to do two things. First we will relate the 
thickness of an ink-layer to its intrinsic density. Secondly, we will compute the in
trinsic density of the second ink both on paper and on the first ink. Finally, we will 
derive the new ink-trap formula for newsprint. 

Let D(x) designate the intrinsic density function of ink-layer thickness, i.e. D(x) is 
the intrinsic density of an ink-layer x units thick. Because D(x) is an intrinsic densi
ty function we know that D(O) = 0 , which simply means that an ink-layer zero units 
thick has zero intrinsic density. Let x be a given ink-layer thickness and let h be a 
very small thickness compared to x. We can express the intrinsic density of the two 
layers together by {6} as follows: 

D(x +h) = D(x) + D(h) -

Now, we have 

D(x+h) - D(x) = (1 -
and dividing by h, we get 

D(x +h) - D(x) 

h 

D(x) • D(h) 

D(x) ) 
-- •D(h) 

Dm 
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Now, recalling that 0(0) = 0, we replace D(h) by D(h)- 0(0) and let h go to zero. 
Thus, we get the following differential equation: 

•D'(O) 

where D'(x) denotes the first derivative of D(x). 

We can regroup these terms as follows: 

D'(x) 0'(0) 

Om- D(x) Dm 

Integrating with respect to x now produces: 

- In ( Dm - D(•) ) 
0'(0) 

•x + C 

A quick substitution of x = 0 yields C = -ln(Dm), thus 

{7} Om ( Dm ) x = -- • In -- and 
0'(0) Om - D(x) 

( 
- x •

0

Dm'(O)) conversely, D(x) = Dm • ( 1 - exp 

By {7}, we have achieved our first goal; to relate an ink-layer thickness to its in
trinsic density. When we apply {7} to ink-trap calculations we will see that the un
known constant 0'(0) cancels out and need never be determined. 

We now turn our attention to ink-trap. As before, we shall use {1} as our defini
tion for ink-trap. We also need to extend our earlier notation as follows: 

let 0 0 = measured density of paper 
0 10 = measured density of ink 1 on paper 
0 20 = measured density of ink 2 on paper 
0 210 = measured density of ink 2 over ink 1 on paper 

0 2 = intrinsic density of ink 2 
x2 = ink-layer thickness of ink 2 

and Dm = maximum printable reflection density 
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In order to compute ink-layer thickness, we must first compute ink-layer densi
ties. The intrinsic density we will need is 0 2 and the two cases we will consider 
are: 

Case 1 : When ink 2 is printed over ink 1. 
Case 2 : When ink 2 is printed directly on paper. 

CASE 1 : First apply {6} as follows 

Thus, 

D210 - D1o = (1 
and finally, 

Dm • ( D210 - D10 ) 

Dm- 010 

Substituting into {7} and simplifying, we get 

{8} Dm ( + D210 - Dw ) x2 = -- •In 1 
D'(O) Dm - D21o 

[Case 1] 

CASE 2 : An identical derivation involving 0 2, 0 20, and 0 0 gives us 

{9} X = -- •In 1 Dm ( 
2 

D'(O) 
[Case 2] 

Now we can express ink-trap as a ratio of the ink-layer thickness which are giv
en in {8} and {9}. So, 

x2 [Case 1] 
TRAP = 100 • 

x2 [Case 2] 

which reduces to 

In ( + 

{10} TRAP 100 • ---------

In (1 + 
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This equation is identical to {5} except that here we have natural logarithms (base 
e) and in {5} we have common logarithms (base 10). It is a convenient property of 
logarithms that when taking ratios of them, the quotient is independent of the 
choice of base. We are therefore free to choose the base as long as we use the 
same base for both numerator and denominator. As a result, equation {5} is ex
pressed with common logarithms as they are more widely used in the graphic arts 
I iteratu re. 

Our final observation is that as Dm becomes larger and larger without bound, the 
sub-additive term 

Dy• Dz 
becomes smaller and smaller 

Dm 

Thus, the effects of sub-additivity go to zero and we have additivity of densities 
holding. The calculus student can apply !'Hospital's rule to {10} letting Dm go to in
finity and show that, in the limit, equation {10} produces 

TRAP = 100 • 
D2o - Do 

which is identical to the ink-trap formula {3}, under the additivity assumption. From 
this perspective, the standard GATF ink-trap formula is a special case of the more 
general newsprint ink-trap formula presented here. 
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