
Exploring the Capabilities of PostScript
in Generating Color Images

Michael Blum* and David Norwood**

Abstract

Since its introduction in 1984 PostScript has had a significant impact on both
desktop publishing and traditional typesetting. Today it is starting to be used in
the creation of color images as well, including high resolution color separation
films and full-color output.

This paper covers how the PostScript page description language deals with color,
the advantages and disadvantages involved, and the various methods available for
generating color images with PostScript. Looking to the future, the impact of this
maturing technology on desktop publishers and graphic arts professionals is dis­
cussed.

Background

In the past typesetting machines have been controlled by command languages
which were specific to a given manufacturer and product line. These command lan­
guages allowed the users to specify typesetting characteristics such as font, line
length, point size and leading. Problems arose when converting files created for
one system to another. Such command languages worked best when a user bought
a tum-key system in which all elements were designed to work together. Particu­
larly with the advent of personal computers and the wide-spread use of software for
imaging text and graphics it became an enormous task for software developers to
write device drivers to support the large variety of printers and typesetters which a
given user might select. It was in this historical context that the PostScript page
description language was introduced in late 1984 by John Warnock and Chuck
Geschke of Adobe Systems.

PostScript

PostScript was developed as a page description language for a number of reasons:
to meet the growing need for control over the imaging of graphics; to deal with
the imaging requirements of raster devices, such as laser printers, which of neces­
sity must image an entire page at a time, rather than one character or one line at a

*California Polytechnic State University
**Information International Incorporated

484

time; and to allow software developers the freedom to create programs which would
work with a variety of output devices.

Both hardware and software components make up the PostScript standard. The
hardware component of the standard is the PostScript interpreter. The PostScript
interpreter is a raster image processor (RIP) licensed by Adobe Systems to printer
or imagesetter manufactures to include with their devices. Its function is to inter­
pret PostScript page descriptions and create a bit map to be imaged by a raster
printing engine. The PostScript RIP is currently found in at least 27 output de­
vices. These raster output devices include laser printers, LED-array, ink jet print­
ing devices, and laser imagesetters. These devices range in resolution from 300 to
2540 dots per inch; however, the same page data can be imaged on any of them
without modification. This is because in normal PostScript page definitions no
device coordinates are specified. It is the job of the interpreter to convert the co­
ordinates defined in the page description into the device coordinates.

The software component of the PostScript standard is the PostScript page descrip­
tion language. In order to promote the language as a graphics imaging standard,
Adobe Systems has placed it in the public domain and has published three manuals
describing its usage. Programming in PostScript is much like programming in
other languages. It is a full featured language including arithmetic, boolean,
string, program control, and file operators. These operators are present to
complement its powerful type and graphics operators.

The design of the PostScript imaging model allows for a number of powerful
graphics capabilities. The user has the ability to manipulate the page coordinate
system in a variety of ways including translation, rotation, scaling, and even odd
effects like skewing. Changes to the page coordinate system affect all elements on
the page including type, rules, tints, line art, and photos.

In normal circumstances it is the job of an application to automatically generate
the PostScript page description which is in tum interpreted by the RIP. Applica­
tion programs that can output PostScript page descriptions are available today on
a variety of computer systems, including the Apple Macintosh, IBM personal and
mainframe computers, Digital Equipment Corporation VAX computers, and various
UNIX machines. Usually the user never has to work with the page description cod­
ing at all, since the application takes care of this. It is, however, also possible
for a user to write PostScript programs directly which will result in printed pages.
This is typically done to achieve graphic effects not available in commercial
software.

The strength of PostScript is that it is designed to be able to handle any type of
text or graphics regardless of complexity and process that data for output to any
PostScript printer with little or no configuring or setup by the user. Because of
this, PostScript is significant for individuals in many different areas of endeavor.

485

In an office environment PostScript laser printers are used for printing business
documents which can easily integrate graphics such as charts along with the text.
PostScript has also been instrumental in the rise of the popular phenomenon
known as desktop publishing wherein individuals with typically little or no back­
ground in graphic arts use personal computers, page makeup software and laser
printers to produce documents such as newsletters and manuals.

Applications capable of generating PostScript page descriptions can also be used
by graphic arts professionals to create high-resolution typeset text. The manner in
which the PostScript imaging model treats text as a graphic element makes it par­
ticularly useful for creating special text-effects. Such effects are difficult to achieve
on traditional typesetting devices without resorting to labor-intensive manual
techniques including cutting and pasting, airbrushing, process camera work and
image assembly manipulation. These text-effects include the ability to rotate,
slant, stretch, skew, mirror, reverse, curve, shade, shadow, outline, etc.

PostScript's ability to render lines, curves, and shapes in different levels of gray
have made it an excellent tool for creating detailed illustrations. Application pro­
grams such as Adobe Illustrator allow graphic artists to specify line weights in
increments finer than a printer's point and screen tint values in fractions of one
percent dot. Curves and shapes can be drawn using Bezier control points. Like the
PostScript fonts which are also defined by these control points, they are capable
of being manipulated using all of the effects mentioned above for text. These il­
lustrations can often be created and edited in a fraction of the time required using
manual methods such as technical pens, ruby masking film, screen tints, etc.

Emerging standardization of file formats such as the Encapsulated PostScript For­
mat (ESPF) allow graphics created with an illustration program to be easily im­
ported into a page makeup program. This is possible even across different hard­
ware platforms since PostScript page descriptions are stored as ASCII text. The
ESPF format includes a screen representation of the image in addition to the
PostScript page description. Because of the device- and resolution-independent na­
ture of PostScript it is easy for individuals to use a 300 dpi laser printer to proof
these illustrations and send the final output to a 2540 dpi PostScript imagesetter.

PostScript and Color

Although Postscript is being used mainly to produce only black and white images,
the industry is starting to see it has a great potential for color. Since its introduc­
tion, PostScript has contained operators for specifying and using color even
though there were no color output devices available that could utilize them. As of
this writing, color PostScript devices are just becoming available and with the in­
troduction of these devices the PostScript page description language is being en­
hanced to provide more color capabilities. Application developers are also
enhancing their products to take full advantage of color PostScript imaging.

486

The original set of four color operators (as documented in the PostScript Language
Reference Manual) allowed colors to be specified in either the hue, saturation,
brightness (HSB) model or the red, green, blue (RGB) model. Supplying HSB val­
ues to the sethsbcolor operator will set up the current color to have those specified
hue, saturation, and brightness characteristics. Like most parameters in PostScript,
these values are normalized between 0 and 1. A hue of 0 corresponds to red, .33
corresponds to green, and .67 corresponds to blue. For saturation, 0 yields a gray
while 1 yields a pure color. Likewise, a 0 brightness represents black while a 1
represents white. On a black and white printer it is the brightness component of
the color which is used to represent the color.

Supplying RGB values to the setrgbcolor operator will set up the current color to
have those specified red, green, and blue intensities. Again, the three values
presented to this operator are normalized between 0 and 1. The remaining two
color operators report the current color in one of the two formats. Executing the
currenthsbcolor operator will return the hue, saturation, and brightness components
of the current color, while executing the currentrgbcolor operator will return the red,
green, and blue components of the current color. By allowing you to define colors
in one model and report that color back in another model, PostScript provides a
way to convert colors from one model to another.

With the introduction of color PostScript devices, the Cyan, Magenta, Yellow, and
Black (CMYK) model is also being supported. Other enhancements include the
ability to image color photos and alter the mapping of colors, as discussed later
in this paper.

An Experimental PostScript Color Implementation

As with black and white PostScript images, color separations can either be gener­
ated automatically by software applications or directly by manually writing
PostScript programs. In order to explore the capabilities of PostScript in generat­
ing color images, the Graphic Communication Department at Cal Poly, San Luis
Obispo, produced an experimental process color poster commemorating donations
made to the department by Apple Computer Inc. and the Linotype Company.

The method used to generate the color separations for the Cal Poly poster in­
volved direct programming in PostScript using a Macintosh Plus computer. Proof­
ing during the coding stage was done on an Apple LaserWriter Plus. Final film
separation positives with all images in place were output on a Linotronic 300.
Color proofs were made using positive-acting Dupont Cromalin. The positives
were then contacted to make negatives for platemaking. Printing of the poster was
performed at Cal Poly on a four-color Heidelberg MOVP. No camera work or paste­
up was required at any stage of the production of this poster.

487

By programming the color separation function entirely in PostScript, complete
control and flexibility was obtained and graphic effects were possible that could
not be obtained through the use of any commercial software. The drawback to this
method, however, is the time it takes to write and debug even a simple page de­
scription.

Although is not feasible to use this approach fur most color applications, the re­
search demonstrates the flexibility of PostScript in creating sophisticated color
images of graphic arts quality and points out some limitations of the current
PostScript implementation. The PostScript code generated in this research could be
used in a "cookbook" fashion by other researchers who might desire to build upon
the color routines implemented here. These routines could also be incorporated
into software which would automatically generate the appropriate PostScript code
for a given color effect.

The way this method is used is as follows. All elements of the page description
are in one file. The bulk of the program consists of a prologue where user routines
are defined. A small section of code at the end of the program makes calls these
routines and controls the actual imaging of separations. This section of code,
which we will call the imaging loop, is executed four times. Each time it is run,
several settings are modified and, in turn, the yellow, magenta, cyan, and black
separations are produced.

The name of the routine used to define colors in this implementation is cdef. It
takes the subtractive components of the color and stores them in a one-by-four ar­
ray. Because colors need only be defined once, execution of this operator occurs in
the prologue. For example, to define a color called "green 1" which has 90% yel­
low, 0% magenta, 75% cyan, and 15% black, the following command would be
given:

/green1 [90 0 75 15] cdef

The values for the subtractive components range from 0 to 100 and represent the
percentages of yellow, magenta, cyan and black that make up that color. Before
storing these values into the array, the cdef routine converts them into PostScript
intensity units which range from 0 to 1. Intensity units in PostScript are inverted
from the percent screen units normally used in graphic arts. On an output positive,
for example, areas of intensity 0 will be solid (100% dot), while areas of intensity
1 will be clear (0% dot). The cdef routine accomplishes this conversion using the
following equation:

intensity
100- percent dot value

100

488

To use a color, the setcolor routine is used. This routine takes a color defined using
cdef and makes it the current color. All images placed on the page from then on
will be in that color until the next setcolor is executed. Calls to setcolor must
occur within the imaging loop because its action depends on which separation is
being produced at that time. An example of how this might be used is to create a
one inch green square which is one inch from the left and two inches up from the
bottom of the page.

/greensquare {

} def

72 144 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto
-72 0 rlineto
close path
/green1 setcolor
fill

The imaging loop performs all tasks necessary to create a separation. It is re­
peated four times by use of a for-next structure to output the yellow, magenta,
cyan and black separations in turn. Before each separation is started the imaging
loop does several things to initialize the environment.

First, the routine setprintercolor is called. Its purpose is to set up the variable
holding the current separation color. The index provided by the for-next structure
is used to represent the current printer (separation) being produced. This value 1s
stored in the variable currentprintercolor.

This variable is used in the next step which is setting the screen angle. Screen
angles of 90 degrees (yellow), 75 degrees (magenta), 105 degrees (cyan), and 45
degrees (black) arc stored in an array. The routine setscreenangle uses the cur­
rentprintercolor value as an index into this array. It then calls PostScript's setscreen
operator to replace the screen angle to be used for this separation.

The last step in preparation is to image the register and trim marks for the page,
as well as the color name tags which will identify the separation, using the do­
marks routine. Each of the above initializing operations is done once at the be­
ginning of each separation.

With the preparation work done, the actual images can be added to the page. Rou­
tines are called within the imaging loop to perform this function. After these are
completed, a showpage is executed (which records the page on the printing engine)
and the next separation is started. This continues until all of the separations are

489

completed. An example of an imaging loop that creates the separations of the
green square from above might look like:

01 3 {

} for

setprintingcolor
setscreenangle
do marks
greensquare
showpage

With these few user-defined routines added to those built-in to the PostScript Lan­
guage, basic color separations of type and tint matter can be produced easily. By
adding other routines, discussed in the next few sections, special color effects such
as neon letters, gradations, and posterizations also can be achieved.

Special Color Effects

Creating a gradation is a time consuming task when approached by conventional
methods. Gradations are fairly easy to produce in PostScript. In fact, it is possible
to perform some complicated gradation effects that would be too difficult to do by
hand.

The method used to produce gradations utilizes the image operator. Although it is
normally used for rendering photographic images, this operator can be used with
synthesized data which will allow it to be used for rendering gradations.

When imaging a photograph, the image operator reads in a string of bytes
representing the gray values of individual picture elements (pixels). From these
data it creates a halftone representation of the image and adds it to the page. In­
stead of feeding the image operator actual picture data, we can synthesize our own
string values using any mathematical formula we choose. The image operator will
treat the string just like actual picture data and place a halftone representation of it
on the page. The image operator will also scale the data to fill the area desired
making it necessary to define only one row of string values.

To fill irregular shapes, such as type characters, the clip operator is employed.
First, a path defining the outline of the shape is constructed. Then, using the clip
operator we limit the imageable area to the inside of this path. Last, we use the
image operator as described above to add the gradation over the clipped shape. The
result of this routine is an irregular shape containing the desired gradation.

The type of gradation achieved will depend on the function used to create the im­
age string. The only requirement of this string is that it contain integer values
ranging from 0 to 255. Any function can be used providing its output can be

490

scaled to this range. Following is a discussion of different types of functions that
can be used for gradations.

For a normal gradation-that is, one that gradually changes value from light to
dark-there are two functions possible: linear and logarithmic. The logarithmic
function yields a more evenly graduated appearance, whereas the linear function
yields a graduation which seems to progress faster at the higher densities. The
better appearance of the logarithmic function is a result of the way humans per­
ceive light. Our eyes, like most of our senses, react in a logarithmic fashion,
which means we are able to distinguish more gray levels at lower intensities than
at higher ones. Using a logarithmic function accounts for this, because its slope
is greater at lower values than at higher ones. Although a linear function might be
used for a certain type of effect, a logarithmic function is the better choice for
most purposes.

Figure 1 shows an example of a gradation made using a sinusoidal function. This
rippled effect is caused by the wave-like shape of a sine curve. Used with gold and
silver colors, this type of gradation gives the appearance of a metallic surface.

f (x)

X

Figure 1 Sine Function

491

A neon type effect, which is essentially a gradation radiating around each letter of
type, is achieved by stroking the outline of the type several times while decreas­
ing the width and changing the color of the line.

Figure 2 shows a progression illustrating the creation of this effect. Starting at
the far left, a letter is shown that has been spread 4 points and imaged in a 80
percent tint. Moving toward the right, the next letter has been imaged the same
way as the first, except that the character path has been stroked and filled again,
this time spread 3 points at a 50 percent tint. On the next character over this has
been repeated, this time adding the outline spread 2 points at a 20 percent tint.
Finally, on the left, the character is finished off with a thin white 1 point stroke
and a black fill.

Figure 2 Creating Neon Type

To simplify this task, the routine glowletters was written. This routine utilizes a
for-next loop to image the letter. Inside this loop the character path is repeatedly
stoked while the width and color of the stroke changes. The color starts out the
same as the background and is at its maximum width. As the loop is repeated the
color goes to white and the width of the line goes to zero. Finally the type is
imaged in its normal color. Figure 3 shows how this effect can be used.

492

Figure 3 Neon Type Example

The way PostScript handles images allows for much flexibility. It is possible by
modifying several parameters in the graphics state to alter greatly the way an im­
age will appear. For this study monochromatic images were manipulated to create
color posterizations and tri-tones. The settransfer operator is what makes such
effects as posterizations and tri-tones possible. This operator allows the user to
change the relationship between the scanned gray level information and the output
gray levels. This relationship is similar to a gamma curve used in photography.

Figure 4 shows a linear transfer function and a photo that was imaged with it. This
is the normal transfer function as it gives a one-to-one relationship between input
and output values. If we reverse the slope of the function as in Figure 5 we get a
negative image of the photograph. By manipulating the transfer function we can
achieve some very interesting effects.

The idea of a posterization is to reproduce a continuous tone photograph using
only several tones. In effect what happens is the tonal range of the original pho­
tograph is divided into several sub-ranges. Every tone in a sub-range is assigned
to one corresponding tone in the resulting posterization. Figure 6 shows an ex­
ample of a transfer curve that would be used to create a posterization. The stair
step shape of the curve is what causes the posterization effect.

493

Figure 4 Linear Transfer Function

Figure 5 Negative Transfer Function

Figure 6 Posterization Transfer Function

494

The way this input/output relationship is established is by supplying a procedure
to the settransfer operator that defines the shape of this curve. A procedure is set
up using a nested if-else structure. For example, if a value coming into the proce­
dure is less than 1.0 (0%) and equal to or greater than .85 (15%), a value of 1.0
(0%) is returned. If it is within the range of .85 (15%) to .54 (46%) a value of .65
(35%) is returned. Between .54 (46%) and .10 (90%) a value of .30 (70%) is re­
turned. And between .10 (90%) and .0 (100%) a value of .0 (100%) is returned.

The same principles are applied in producing color posterizations. The only
difference is that each of the tonal sub-ranges of the original is assigned to a
color tint rather than just a tone. To achieve this, a different transfer curve is used
for each separation.

A tri-tone effect can be created to add a color tint to the reproduction of a black
and white photograph. The result is still monochromatic but with a greater range
of tones. The key to producing this effect is determining the correct transfer
curves to be used in rendering the image for the individual separations. This can
be done by evaluating the color balance of the printing press being used and the
desired tone reproduction of the image. These curves are then used to produce the
separations.

Problems Associated with PostScript Color

With present technology only "mechanical" separations are feasible. These effects
include spot color, screen tints, line art, tinted type, and gradations. Reproducing
full process color images such as color photographs is still problematic due to
memory and speed limitations.

Like all data in PostScript, the data format for PostScript images is limited to
valid ASCII printable characters. Because of this design it takes two bytes of data
to represent 256 levels of grey, whereas in some other data formats it would take
only one byte. Also, no data compression techniques are used in any of the pre­
sent implementations of PostScript. Therefore, images can take up to twice as
much space as with other systems and require excessive transmission times. Once
the data arrives at the interpreter, ripping times can be excessive compared to
normal color separation production.

Another problem area is color trapping. Performing this function is possible in
PostScript, however techniques to accomplish this are lacking from present soft­
ware packages. In conventional image assembly, photomechanical techniques are
used to create a slight overlap or trap between adjacent colors. When misregister
does occur on press this overlap acts as a buffer area so the unwanted gaps will
not appear. Spreads are used to fatten a color area to overlap it with the surround­
ing background. Chokes are used to shrink a color area relative to its background.

49)

It is normal to modify the thickness of whichever image has the least dominant
color, in order to minimize this effect from visual detection.

Performing spreads and chokes of geometric and curved shapes can accomplished
in PostScript by utilizing the stroke and setlinewidth operators. This is done by
stroking the outline of these types of objects with different line widths depending
on which color separation is being produced. When spreading is required the
outline of the shape is stroked using the same tint value as the object itself. For a
choke, the outline is stroked using the same tint value as the background. The
width of the stroke in both cases is set to a thickness equal to twice the amount of
overlap desired, since the stroke operator centers the line it creates on the outline
of the object.

Two methods were used in the Cal Poly poster to achieve spreads and chokes of
text. The first is easiest to implement and uses the PostScript charpath operator,
which takes a string of text and creates a path defining its outline. Figure 7 illus­
trates how charpath can be used to produce spreads. Figure 7(a) shows a character
we want to spread. The charpath operator creates a path which follows the outline
of the character which can then be imaged using the stroke operator. In Figure 7(b)
we see the path created by charpath represented by a solid line. A line applied to
this path using the stroke operator will be centered on it. The resulting line is
represented by the dotted lines in the figure.

(a) (b) (c)

Figure 7 Creating Spreads and Chokes

496

To accomplish spreading as in figure 7(c), we first image the characters normally
with the show operator. Next a path following the outline of the characters is cre­
ated with the charpath operator. Finally the current line width parameter is set to
twice the amount of desired overlap and the path is stroked.

This method has two drawbacks which will keep it from being able to work effec­
tively with larger amounts of text. First, with current implementations of
PostScript it takes a great deal of time to create character paths. Secondly, there is
a finite limit to the number of characters that can be outlined with the charpath
operator at one time because of the memory it takes to hold character paths.

A way around these drawbacks is to create an outlined version of the desired font.
Outlined fonts are imaged very quickly and, because they are treated like normal
fonts, are not limited in the number of characters that can be imaged at a time.
Spreads and chokes can be created with outline fonts much the same way charpath
was used. A spread is created by imaging the characters once with the normal font
and again in the same color with the outline font. A choke can be created by
imaging the characters with the normal font and then changing the current color
to that of the background before imaging the characters with the outline font.

Emerging PostScript Color Hardware and Software

At the time this paper is being written there are a number of developments on the
immediate horizon which will have a significant impact on the use of color in
PostScript. The first color PostScript output device, the ColorScript 100, will be
shipped by the QMS Company in mid-May of this year. It is a thermal transfer
color printer capable of outputting approximately one 11" x 17" color page per
minute at a resolution of 300 x 300 dots per inch. The Color Script 100 controller
comes with 8 MB RAM, 1 MB ROM, and a 20 MB hard disk. The controller is
based on Version 49 of PostScript, and has RS-232, Centronics parallel, and RS-
422/AppleTalk interfaces.

Adobe Systems is currently introducing a number of new extensions to PostScript
for the support of color. To complement the existing setrgbcolor and sethsbcolor
operators, a setcmykcolor operator has been added. The currentcmykcolor operator
returns the four components of the current color in the graphics state. The color
equivalents of the existing setscreen, settransfer, and image operators are being
added as well. The setcolorscreen operator will allow the specification of screen
angle, screen frequency, and halftone cell pattern for each color. The
currentcolorscreen operator returns all twelve current halftone screen parameters in
the graphics state. The setcolortransfer operator is designed to map the user values
of the color components to the actual device color components. Similar to the
settransfer operator it may be used to provide gamma correction for a printer's
halftoning response. As demonstrated earlier in this paper, settransfer may also be
useful for various effects beyond its original intent, such as posterizations. The

497

currentcolortransfer operator returns the current transfer functions in the graphics
state for each of the four colors.

The addition of a colorimage operator will now make it possible for PostScript to
render sampled color images in several data formats which are specified by Adobe
along with the new color operator definitions. The new operators also provide a
means of converting from the RGB color model to the CMYK color model, and
allow the generation of a black printer based on RGB values. It is possible using
the new setblackgeneration operator to specify a procedure that maps the user color
components to the output device black values. Undercolor removal can be set
similarly using a procedure that is called by the new setundercolorremoval operator.
There are also operators to return the current function of each of these two aspects
of the graphics state: currentblackgeneration and currentundercolorremoval.

Adobe is working on providing backward compatibility of these operators in
existing black and white printers through PostScript language implementations.
New black-and-white printers will have the capability of producing color
separations from color PostScript files. This color separation capability will not
be backward compatible as the frame buffer of existing machines would be too
small and other significant changes to the PostScript interpreter would be required.
Rather, the front-end will have to create the separations and send each to the
output device followed by a separate showpage command, in a manner similar to
the method used in the Cal Poly poster.

The Scitex Corporation has recently announced an agreement with Adobe Systems
to build a PostScript RIP to work with the Scitex Raystar film recorder. It has also
announced the intention of utilizing the emerging Display PostScript standard in
its Response color workstations. Display PostScript is being developed by Adobe
Systems to create a true WYSIWYG (What You See Is What You Get) display
standard, which will exactly match the screen image to the output printed on a
PostScript device, except in terms of resolution.

There have been a number of developments regarding companies which are
attempting to "clone" the PostScript interpreter. Several of these are high­
resolution imagesetters which are promising significantly faster processing
speeds. These may have a positive effect on the development of color PostScript
applications if the implementations are truly compatible.

The Quark Corporation currently sells a page makeup program for the Macintosh
known as XPress 1.1 which is capable of separating spot color. They are currently
completing version 2.0 which has extensive color support. In this new version
the user will have a choice of one of four color models to work with: HSB, RGB,
CMYK, and PANTONE. A palette of up to 256 colors per job may be defined using
any of the above models. It is possible to switch color models at any time in a
job. Selected objects are assigned to any one of the colors from the palette, which

498

is displayable on a color monitor. The output of this software has been calibrated
by Quark to the QMS ColorScript I 00 printer using the new PostScript
setcolortransfer operator to color correct for hue error in the printer's ribbon.

Additionally, Quark is preparing to release another version of the software known
as Handshake XPress which has been developed to pass text, graphics, and page
geometry to Scitex Response Systems. This means that it will be possible for a
desktop publishing system to create a complete layout of a color page with type,
color tints, and low-resolution scans (used as position prints), which can in tum
be transferred to a CEPS (Color Electronic Pre-press System) where high-resolution
scans may be merged with the text and page geometry; retouching, blending,
trapping and the like may be accomplished; and finally the file may be output to a
film recorder for final separations.

Future of PostScript Color

The new PostScript color operators will provide a standard way of communicating
color definitions between applications such as word processors, illustration
programs, and page makeup packages. The flow of data in a theoretical PostScript
desktop color imaging system is illustrated in Figure 8. Components of a color
page could be generated by a word processor, illustration program, or color
scanner. Text files could contain colored initial capitals, subheads, or other color
emphasis. Color images from the scanner could be brought up and altered in a
pixel editing program or used as a tracing template in a color illustration program.
The files created by these programs then would be combined into complete pages
with a color page makeup program.

The advantages of device independence are very important when dealing with
color. Color output will be possible at several stages. From the word processor,
pixel editor, or illustration program, users can create output on the color printer.
Also, completed color pages will be sent to this device. While some people will
use color printers to output their final pages, for others these will only be proofs.
With the same data they will be able to use a high resolution PostScript
imagesetter and create graphic arts quality separations.

To the graphic arts professional PostScript has the potential of being more than
just a page description language useful in the office environment and desktop
publishing systems. As evidenced by this paper, color systems based on
PostScript have the potential to create professional-quality color images. Recent
developments in the industry indicate that PostScript is likely to help integrate
inexpensive personal computers with high-end CEPS to create a more efficient and
cost-effective color imaging environment.

499

l I Man"~ript

Word
Processing

Program

I

J

Color
Photograph

Table-Top Color
Scanner

I
J 1

Scan Graphic
Retouching Illustration

Program Program

T I I I
I .. ______ ------------------------,-----·

I
I
I
I

Color Page Make-Up I
I

Program I
I
I
I

.I J
I
I
I
I
I
I
I
I

Hi h Color I

Reso?ution I

lmagesetter
Proofer --·

1 1

Color Separations Color Proof

Figure 8
A Color Imaging System

500

Selected Bibliography

Adobe Systems Inc.
1988a. PostScript Language Color Operator Definitions, (Adobe Systems

Inc., Palo Alto, CA) 21 pp.

1988b. PostScript Language Program Design, (Addison-Wesley Publishing
Co., Reading, MA) 224 pp.

1988c. Colophon: Adobe Systems News Publication, vols.1-5, (October
1985-April 1988).

1986. PostScript Language Supplement for the Linotype Series 100:
Version 42, (Adobe Systems Inc., Palo Alto, CA) 65 pp.

1985a. PostScript Language Tutorial and Cookbook, (Addison-Wesley
Publishing Co., Reading, MA) 244 pp.

1985b PostScript Language Reference Manual, (Addison-Wesley Publishing
Co., Reading, MA) 321 pp.

Holzgang, David A.
1987. Understanding PostScript Programming, (Sybex Inc., Alameda, CA)

459 pp.

Smith, Alvy Ray
1978. "Color Gamut Transfer," Computer Graphics, vol. 12, no. 3, pp. 12-

19 (August 1978).

Warnock, John, and Wyatt, Douglas
1982. "A Device Independent Graphics Model for use with Raster Devices,"

Computer Graphics, vol. 16, no. 3, pp. 313-320 (July 1982).

501

