
COMPATIBLE, TRANSPORTABLE TYPE 
AND PAGE DESCRIPTION LANGUAGES 

Rene L. Delbar* 

Abstract: This paper deals with the actual situation and future directions for page descrip­
tion languages used to drive various output devices, display methods for representing pages 
on workstation screens, and the associated techniques for font encoding and character 
rendering. 

Recent developments in the areas of output device and display screen control have opened 
roads towards better solutions for a close match between screen and final output. At the same 
time. they may lead to parallel and mutual incompatible directions, weakening the chances 
for broad document interchangeability, and if nothing else, seriously confusing the end users. 

To start, what is a "page description language" (or POL in short)? During the design and 
layout phase, the application software stores the definitions for each page element, together 
with their placement and interaction information, in some internal database. Essentially, a 
page description language is a vehicle to carry the page data from the workstation down to 
the output device, where the page will be imaged (Figure I). During this transfer, the descrip­
tion of the page is translated into a POL command stream. 

POL commands raster video data 

Figure 1. Typical output data stream. 

The next step in the output process is handled by the "raster image processor" (or RIP). This 
dedicated computer system executes the individual POL statements; it generates a bitmap of 
pixel map representation of the page, matching the size, resolution and other imaging 
requirements of the output device. Finally, the page data are transmitted to the marking 
engine. typically as a raster video signal synchronized with the physical scanning process. 

It is clear that both the application program, generating the POL command stream. and the 
RIP executing these instructions, must be based on the same graphics imaging model. 

* AGFA Compugraphic, Wilmington, Mass. 



The model represents their common view of the world, and describes the basic concepts and 
functionality for constructing composite structures. Operations such as filling. clipping. and 
transparency have to be uniquely specified. 

Much in the same way, workstation and RIP must share common methods for handling text 
and fonts. As a minimum, both sides have to agree on font references (typeface names, 
character metrics, etc.). Ideally. the application and the output device will use exactly the 
same graphic environment, i.e. imaging model, graphics and text command language. and 
font representation. This situation guarantees as close a match between display and final 
hardcopy as the obvious differences in resolution and color/tone scale will allow. 

In practice however, most publishing programs incorporate their own imaging model, and 
will translate a private set of graphic primitives into the appropriate command stream for each 
of the supported output devices. This may result in some discrepancies between the graphics 
capabilities of the program and the output device. Some application features may only be 
available in conjunction with selected groups of output devices, and not all functionality 
inherently offered by a POL or RIP may be accessible from the program. As both the 
workstation system environments and the output devices further converge towards a limited 
set of windowing systems, imaging models and POLs. it can be expected that compatibility 
-or at least consistency- will improve. 

Calling Adobe Systems' PostScript the dominant standard page description language 
within the desktop publishing and electronic prepress worlds, is almost an understatement. 
PostScript's success is based on its broad, general imaging model, designed to be able to 
describe any page that can be imagined. To reach that goal, PostScript provides seamless 
integration of text, structured computer graphics, and continuous tone images. Its strong 
typographic capabilities are supported by a large and continuously growing typeface library. 
with contributions from all major traditional type libraries. Finally, PostScript RIPs have 
been made available for a broad range of output technologies: all of them accept basically the 
same device independent page descriptions. 

Today, the term "PostScript" covers more than just the original printer page description 
language. Encapsulated PostScript Format (EPSF) files are used increasingly to exchange 
graphic documents- ranging from line art illustrations to complete pages -between different 
application programs and/or different publishing workstations. For some of these computer 
systems. Display PostScript™ is the heart of the screen display and windowing subsystem. 
The Adobe Type Manager software implements the PostScript font scaling and rendering 
technology on yet other systems. 

All of the above was not accomplished overnight. and there is still a lot of criticism with 
respect to PostScript. To better appreciate the why's thereof, it is important to distinguish the 
definition of the language itself (including the underlying imaging model) from the various 
product implementations. 

The hardware of the Adobe RIPs was initially designed for relatively cheap plain paper 
printers, to be used by relatively unsophisticated application programs. As software devel­
opers and desktop publishing users started to discover the graphics potential of PostScript, 



and as the performance demands of output devices (be it resolution or speed) went up. 
PostScript RIPs seemed slower and slower. Although recent RIP designs are based on sig­
nificantly more performant hardware, increases in application sophistication, user experi­
ence (and expectations!) and output device speeds will continue to consume whatever 
horsepower is added to the RIPs. 

Early PostScript drivers did not exactly do a good job either, when converting from the 
application's graphics model into the PostScript world, which was another reason for 
performance problems. Output times for pages containing the same elements, on the same 
output device, but using different application programs, still vary over a wide range. As 
PostScript is gaining acceptance. driver implementations have improved, and application 
imaging models have been adapted to more closely retlect the output capabilities. 

It also remains a remarkable fact that most people will associate PostScript with output from 
Apple Macintosh computers. In reality, virtually all Mac programs output a QuickDraw 
display list, that is translated into PostScript by the LaserW riter driver software ... 

On the quality side, the first debate came on the rendering of typefaces. or more precisely, 
how close the character shapes at large point sizes and/or at high resolutions match with the 
original design of the face. It is obvious that the early PostScript RIPs had problems 
rasterizing some fine and complex characters, and that these were sometimes avoided by 
minute changes to the character outlines. This process of ''regularization" will be discussed 
later. As the quality of the RIP implementations improves, and the font designers develop a 
better understanding of their capabilities and limitations, this situation has significantly 
changed. 

Perhaps the single biggest area of quality concern has to do with the halftone screening 
techniques currently used within the Adobe RIPs. What used to be more than appropriate for 
300 dpi laser printers, may not match the reproduction requirements of precision, high 
resolution imagesetters. 

The problem is most prominent when making color separations, as the standard Adobe 
PostScript screening techniques result in a limited choice of screen frequencies and angles. 
Moreover. the values are different from what the color trade is traditionally using, and that 
"non-conventional" character alone became the basis for ardent discussions. The whole issue 
is complicated by the fact that the battle is fought in the desktop arena, where there is a general 
lack of understanding of color issues and applications to begin with. 

There should be no doubt that all of these problems will be solved in the coming years. As 
the size of quality demanding markets grows, and users become fully aware of the 
requirements for quality. performance and control, they will be more prepared to pay for an 
appropriate RIP implementation , and specific product offerings targeted at these markets 
will appear. There will be faster RIPs. using advanced hardware concepts such as RISC com­
puters. large cache memories, and graphics co-processing. The improvements in processing 
power will be matched by faster internal storage and more efficient data communication 
channels. to make sure that the incremental power can be used to a maximum. 



Large volume implementations for product categories with little variance (such as printers) 
will continue to be based on dedicated hardware implementations. The more optimal use of 
the computer resources and the lower build cost per unit will compensate for the extra engi­
neering effort. 

Implementations based on standard PC or workstation platforms will also de developed. In 
some cases, the goal is to further lower the cost of the RIP for environments with low output 
volumes, such as personal printing. For other applications, aimed at the high end or at 
specialty markets. lower product volumes and access to a wide price/performance range will 
overrule the extra hardware cost and system overhead. 

There will be RIP versions that can drive multiple output devices using different imaging 
technologies, such as a silver based imagesetter and a plain paper proofer, or a color and a 
black and white device. There will be improvements to halftone screening methods, 
commonly involving hardware support. Data compression techniques will allow faster 
transmission and more efficient local storage of bulky image data. Procedures for color 
control and color calibration will extend the goal of device independent document exchanges 
into the color arena. 

Full document interchangeability, after all, is the major objective pursued by the user 
community. This implies absolute compatibility between the sending and the receiving 
system for graphics as well as for text. In addition. true "what-you-see-is-what-you-get" 
(WYSIWYG) conformance between the workstation display and the final hardcopy is 
essential to support layout, composition and design decisions while working interactively on 
the screen. 

There is an ongoing evolution in the font encoding and rendering area, bringing different 
and competitive solutions to various parts of the publishing system. The users however want 
to protect their considerable investment in fonts. They do not wish to replace their entire font 
library as they move on to newer output devices- potentially from a new vendor- nor do they 
like multiple font sets supporting displays and output devices. "One font for all" is obviously 
their preferred choice. 

Finally. the desire to use the text character as a true design element is heard increasingly. 
The closed font technology of the previous system generations has limited the capabilities for 
the end user to modify character outlines. make partial changes to fonts, or even to create 
complete user defined fonts. 

The font revolution started with display systems switching from using character bitmaps 
towards character outlines. An outline is a mathematical description of the character's shape; 
it fully describes the character within a device independent coordinate system. The outline 
may be constructed using straight line segments, arc segments, or higher order curves. Using 
less complex building blocks increases the difficulty to precisely match the intricate character 
forms. As a result, less smooth curves with visible discontinuities at the joints will become 
apparent at larger sizes. This can be compensated by adding more shorter curve segments to 
the outline. thereby increasing the description data size. 

525 



Bitmaps are small images representing characters at a specific size, orientation and 
resolution. The bitmap data indicates which pixels will be turned on to display the character 
on the screen or on the output page. Since the size of the pixels is fixed by the display 
technology, only a limited number of them will be available to show small characters at low 
resolutions. That results in very crude approximations of character shapes. 

More important, character bitmaps are not scalable, i.e. a bitmap calculated for one display 
size cannot be used to represent the character at any other size, without serious deformation 
or loss of quality. 

Of course, any digital reproduction system will ultimately use character bitmaps. The 
important difference is whether these bitmaps, for various sizes and resolutions, will be pre­
calculated (and perhaps hand edited) and stored permanently within the system. or will be 
generated from the outline representation on-the-fly, at the proper size, angle and resolution, 
when needed. 

It was mentioned earlier that for both low sizes and resolutions, the number of pixels 
available may be hardly sufficient for a decent representation of the character shape. For long, 
there was no known technology to render readable characters automatically from outlines 
- let alone to do justice to character design elements. Therefore, hand tuned character bitmaps 
were the only way. 

Today's intelligent font scaling algorithms rely on additional instructions- appropriately 
called "hints" -that are defined and stored with the character outline descriptions. These will 
direct the character rendering software to uniformly represent stem widths (regardless of 
rounding effects), serif shapes (regardless of grid fitting), etc. (Figure 2). Hints cannot create 
extra pixels on the screen, and therefore cannot really improve the precision of the character 
bitmaps. However, they can improve the look of the text by dealing with the approximations 
in a consistent way. 

mtn 
without hints with hints 

Figure 2. Effects of scaling hints. 

The PostScript environment distinguishes between two types of outline fonts. The so called 
"Type III" fonts are user defined, and consist of normal PostScript instructions in clear text 
form. They contain no hint information, and can therefore only be used with good quality 
results on high resolution devices, or at larger point sizes (as for headlines). 

The "real PostScript" or "Type I" fonts use special PostScript commands in the outline 
description, and are encrypted for even greater compactness. Type I fonts have embedded 
scaling hints, so that they will provide quality output at any size or resolution. They are cur­
rently available only from Adobe Systems or from type vendors that have licensed Adobe's 

526 



tools. The recent publication hy Adobe of all Type I font details will result in a wider offering 
of fonts encoded in this format. as well as in tools for end users to make their own hinted fonts. 

Adobe ·s autl1111atic font scaling system is based on the concept of having an intelligent 
intelligellt rasterizer processing relatively simple, well-behaving outlines. As an example, 
the method expects a mathematically identical definition of all serifs that should render 
identically at any size. That concept of '"out! ine regularization" became quite controversial 
among typographers, fearing that such artificial restrictions removed the elegance and there­
finement of the original '"true cut"' design. 

It is true that the very first PostScript typefaces contained outline changes to work around 
problem situations with early RIP software. In many cases though. the corrective actions were 
nothing more than removing errors from the outline databases, originally compiled by optical 
scanning or manual digitizing lettercards. Again, the rasterizer implementations have 
improved, and the font designers now better master the font encoding and hinting techniques. 
so that the necessity of regularization -and thereby its use- are significantly lower. 

A full PostScript system can use a single font for all purposes (Figure 3). This supposes the 
use of a PostScript RIP with both the plain paper proofer and the high resolution imagesetter. 
In addition, the workstation relies on Display PostScript technology to drive the screen. 

~~ 
PostScript 

page J ~ostSScri ·p 
b;tmap t Z::' 
• Figure 3. Full PostScript system. 

PostScript 
RIP 

Display PostScript however is not (yet?) widely available on PCs and workstations. Most 
application environments still rely on their own imaging model, or on the one generally 
supported by the PC or workstation itself. It is far more easy to match or duplicate the strictly 
"graphics"' portion of PostScript than it is for the text side. The Adobe Type Manager (ATM) 
product was developed precisely for such situations. ATM packs the PostScript character 
rasterization software of into a separate software module, to be used as an add-on to the 
standard display/windowing system of the platform. Designed specifically to improve the 
rendering of text on low resolution displays, ATM exclusively uses the hinted Type I fonts 
(Figure 4). If the display software, in addition, can prepare a higher resolution bitmap to 
directly drive a dumb raster output device, then A TM will generate better character bitmaps 
for such output as well. 

527 



18 point 
24 point 

36 point 
48 paint 

72 point 

18 point 
24 point 

36 point 
48 point 

72 point 
Figure 4. Comaparison of screen text quality when 

scaling bitmaps (left) or using outlines (right). 

ATM. in fact. contains a more sophisticated rasterizer than the typical PostScript RIP 
available today. It provides better readability at small character sizes. especially in bold and 
italic variations, and requires less regularization, even less hints. Adobe has announced that 
the A TM technology will eventually become a part of the next generation PostScript RIPs. 

The Apple LaserWriter was the first commercially available output device to incorporate 
a PostScript RIP, and desktop publishing on Apple Macintosh computers has been the major 
promoter of PostScript output. Some time ago, however, Apple decided to develop its own 
font scaling and rendering technology to complement the QuickDraw graphics environment. 
The Apple approach, originally known as "Royal", has since been endorsed by Microsoft as 
well. and will appear on the market later this year under the name of 'True Type". 

There are some interesting differences between the two approaches. Adobe's Type I format 
uses third order Bezier curves in its encoding, which result in very compact outline 
descriptions. Apple's TrueType rather uses second order quadratic functions, that can be 
calculated more rapidly. 

Adobe opts for relatively simple outline data. and puts most intelligence into the rasterizer 
itself. The benefit thereof is that existing fonts always can take advantage of better rendering 
software. as this becomes available. The Adobe option also makes font development 
somewhat simpler(although still far from automatic or straightforward). Apple bundles most 
of the scaling intelligence with the font outline description. The rasterizer itself becomes a 
relatively simple and compact piece of software. TrueType has a very elaborate hinting 
language, with typographic capabilities reaching beyond Adobe's- or most other- scaling 
methods. The font design. and hence the quality of the character representation. will be as 
good as the sophistication of the scaling hints included by the typeface producer; none other 
has control on the final result. It will undoubtedly take quite some time. training and expertise 
- and a clear market demand forthe extra effort- before most type vendors will push the tech­
nology to its limits. 

As of today, only Adobe licenses software tools required to produce Type I fonts with all 
bells and whistles. Most traditional type vendors having licensed these tools and have 
reported going through an extensive learning phase. The first typefaces are now passing their 

528 



rigorous quality assurance process. The publication ofthe Type I specifications will certainly 
open other font sources. Apple will rely on third parties to provide TrueType production 
tools. and expects products from traditional type suppliers as well as desktop offerings 
targeted at the end user. The first typefaces and tools are expected to appear together with the 
release of Apple's System 7 operating system version forthe Macintosh, laterthis year. Broad 
font offerings from classic type libraries will here too come only after the traditional vendors 
have gone through some painful, but unavoidable learning and debugging phases. 

When Microsoft declared its support of True Type, Apple announced that it would utilize 
the Bauer PostScript clone RIP (acquired earlier by Microsoft) with future output devices. 
The new joint technology goes by the name of 'Truelmage ... and -of course -incorporates 
True Type for text rendering. 

Neither Apple nor Microsoft plan to use (Display) PostScript technology for screen display 
purposes. As an example, a typical Macintosh application will continue to use the QuickDraw 
environment, whereby TrueType technology is used to display text on the screen. True Type 
may also supply the character bitmaps for printing to dump raster devices, the remainder of 
the page bitmap built by other Quick Draw routines. For final output. the QuickDraw display 
list can be translated into PostScript-style commands and sent to a TrueType (i.e. PostScript 
clone) RIP. The RIP too will use True Type outline fonts, that can be downloaded from the 
workstation (Figure 5). 

True Type 
->bitmaps 

True Image 

True Type 

page 
bitmap Truelmage RIP 

Figure 5. QuickDraw{fruelmage system. 

In the same way, OS/2 and Presentation Manager applications will adhere to the GPI 
imaging model. In both cases, there are significant differences between the workstation's 
internal imaging model and the PostScript one used by the output RIP. Generating a 
True Type command stream will require conversions that are not always simple or precise. 
Apple's and Microsoft's plan is to extend TrueType with additional operators, to support 
QuickDraw and GPI in a more direct way.ll is unclear whether. in addition. TrueType will 
have some language restrictions compared to the original Adobe PostScript. 

Apple· s True Type PostScript interpreter will also accept downloadable Type I fonts. In 
addition, Apple has announced that it is developing a method to download True Type fonts 



to "real"' Adobe PostScript RIPs such as the one in its own Laser Writer. Of course. once there 
is a significant market using primarily TrueType fonts, Adobe may choose to add direct 
support for True Type into its products as well. 

To most observers, the so called "font war" is fought between Adobe, Apple and Microsoft. 
IBM decided on the latest battle, by announcing support for Adobe Type I font technology 
across all systems under its Systems Applications Architecture (SAA). There are however 
two more players on the field, moving quietly but not less successfully. 

A prominent player in the office and corporate markets is Hewlett-Packard. LaserJet 
printers and clones still outsell PostScript devices five to one. HP has recently introduced the 
Laser Jet III printer series, whose PCL LevelS command language adds scalable fonts as well 
as HPGL plotter compatibility. The font technology used with the printers is AGFA 
Compugraphic's "Intellifont", which is also available as separate software modules for 
screen display in DOS and OS/2 PC environments. For those users requiring even more 
graphic sophistication, HP offers a PostScript cartridge as an option to the printer RIP. 

In the Unix workstation world, Sun Microsystems has acquired the Folio font technology 
and included it as "TypeScaler" into its X 11 (NeWS windowing system. It is worth noting that 
NeWS, by itself, is a close replica of the Display PostScript environment. The Sun implem­
entation adds scalable type functionality to the XWindows environment as well (whereas the 
"standard" only covers bitmap fonts). TypeScaler is a very fast rasterizer. generating screen 
and printer fonts of fair quality on-the-fly. It is currently the only system with proven 
automatic translation into the Folio F3 outline format. including automatic hint generation. 
Sun workstations are widely used in corporate and professional publishing systems. The 
success of the Folio technology will further depend on the actual availability of compatible 
output devices. 

With all these competing output and font technologies, the overall picture forthe publishing 
industry becomes quite complicated. Figure 6 illustrates how the situation will look, in the 
near future, for some of the major PCs and workstations used or promoted for electronic 
publishing. In two cases- the NeXT computer and IBM's Series 6000 Unix workstations­
a full PostScript implementation is available. Sun workstations have NeWS (very close to 
Display PostScript) plus TypeScaler at the display side, and PostScript at the output. System 
7 for the Macintosh will use QuickDraw with TrueType for screen display and output on 
simple devices, and Trueimage for more complex ones. The OS/2 -Presentation Manager 
team will offer both A TM and PostScript. as well as True Type and True Image. and even 
provides hooks for other additional solutions. such as Intellifont and PCL5. 

However, add-on implementations of the Adobe Type Manager software are available for 
Macintosh as well as for Sun systems. In addition, there is the Mac LaserWriter driver 
supporting PostScript output. The combination of all of the above makes PostScript presently 
the only choice for cross-platform compatibility. 

The question may arise whether the total market is large enough to accommodate so many 
different font standards. The use of typography is however no longer limited to traditional 
publishing. PC applications including word processing. presentation graphics and desktop 

530 



IBM Sun IBM/Microsoft Apple NeXT 

Figure 6. Overview of system architectures . 

publishing increasingly provide support for type (Figure 7). In addition to the captive market 
(typefaces for the trad itional, closed composition systems). there is a huge emerging open 
market reaching to the millions of PCs and workstations in t.oday 's offices and businesses . 
It is not inconceivable that multiple font standards each obta in a comfortable marketshare in 
specific areas. Accepting documents from these diver e envi ronments - with the ir own 
" local" font standard - will be one of the challenges for the publishing professionals. At least 
for the moment , there are no good-enough font translators in sight. Multiple libraries will 
have to be used, with most probably support for multiple font fonn ats by workstations and 
RIPs. It remains a concem how closely different encod ings of the same typeface will match 
each other as for widths, shapes and character sets. 

At the output side, there is a risk for multiple, incompatible evolution paths for page 
description languages, with now two major industry forces shaping the PostScri pt of the 
future. Each camp has different goals. different priorities. di fferent markers to serve . 
lntemational standardization efforts, such as !SO 's Standard Page Description Language 
(SPDL) deve lopment , may perhaps bring some foc us to the industry. 

Graphic Arts 

DTP 

Presentation 
Graphics 

Word 
Processing 

Figure 7. Type markets. 

531 




