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Abstract: A new method for electronic screening at arbitrary angles and rulings is 
presented. It is based on a new digital representation of halftone images. A 
mathematical formulation related to digital geometry is given, encompassing some 
variatiohs and generalizations. In extension to this, analysis of digital methods for 
processing of halftones is given. Incorporating number theory, the analysis focuses on 
digital implementations and moire and shadowing problems in this connection. 

The method has been implemented on a transputer-system. Experiments on artificial 
and real test images have been carried out giving promising results. A sample of these 
is shown. 

The method performs as a look-up table screening. It uses 'sub-dots' but compared to 
other look-up table screening methods with the same sub-dot resolution, the dots are 
more regular. In comparison with threshold screening, it renders a smoother image, 
whereas threshold screening is better at rendering line work. Extensions to improve 
the ability of rendering line work are given. 

1. Introduction 

This paper deals with the problem of digital screening, i.e. the process of converting a 
digital gray value (contone) image into a bi-level image. A new method of screening at 
arbitrary angles and rulings have been developed and implemented based on a new 
description of halftone grids. The description has also been used for data compression 
(Forchhammer, 1988b,l991) and descreening from scanned halftone images. The 
description is especially suited for clustered dots organized in a grid. 

In Section 2, a mathematical description of screening is given. In Section 3, the new 
(DGP) algorithm and the implementation are described. In Section 4, a test image is 
screened with the new DGP method, and for comparison, threshold screening. 
Methods of analyzing and reducing moire effects are discussed in Section 5. 
Implementing the new screening method (and similar methods) using a look-up table, 
the size of the table might be a problem. The order of the size is determined in 
Section 6. Extension of the new method is outlined in Section 7, e.g. for improving 
the rendering of edges and linework. 
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2. Halftone Screens and Digital Geometry 

In the halftoning process three entities are involved. The original gray value image 
(G), which we want to render, is combined with the halftoning screen (S) to create 
the resulting bi-level halftone image (B). Each of these entities may mathematically be 
described as a function of two variables. 

The term pel is used for the bi-level (black or white) picture elements (of the output 
plotter). The term pixel is used for the gray value picture elements of the original 
image/photograph (from the input scanner). 

The halftone screen can be described in a continuous coordinate system (s,t) with 
integer values at the screen dot centers. The images can be described in another 
continuous coordinate system (x,y) with integer values at the plotter pel centers. 
There is a bijective relation between the two coordinate systems. A linear grid is 
described by the relation 

x(s,l) = s·V
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) E R4 and (ef) E R2 gives the offset. The angle 8 of the grid 
vectors corresponds lo the angle of the halftone screen and the length I VI to the 
inverse of the screen ruling r (relative to the plotter resolution). 

Different screening methods may be characterized by the difference in the 
mathematical relations (mappings) of the coordinate systems of the three screening 
entities. 

Digitizing the grid description for a look-up table (lut) treatment of the bi-level 
image, it is desirable to tesselate the bit-map in a way that each pel belongs to exactly 
one Jut-element. This way each pel is addressed exactly once. 

We combine the above criterias to define a class of halftoning techniques including 
threshold, look-up table and the new DGP screening. The characteristics are 

C.l. The structure of the halftone image is a grid 
C.2. Each pel in the output is addressed (/considered) exactly once. 

This class may be described by the following logical decomposition: 

1) Partitioning the output pels (B) in look-up table elements. 
2) Interpolation of the gray values of the input image (G) to assign a gray value to 
each Jut-element. 
3) Look-up table assignment of the color to the pels of the Jut-elements on basis of the 
gray value determined in 2) (This is equivalent to a mapping). 

Ordered dither may be described within this framework, but we shall proceed with 
clustered dot halftoning techniques only. 

Important features of a screening process includes the ability to generate 
(approximately) arbitrary angles and rulings, resolution of the screening, and lack of 
artifacts related to control of the dot areas. 
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Threshold screening is a digital version of conventional screening. The gray value of 
the original image (interpolated) at each pel ( = Jut-element) of the resulting image is 
thresholded by the value of the threshold function (S) corresponding to the screen 
(look-up table decision). According to (Kekolathi, 1983) the Sci-Tex Response-300 
uses threshold screening. Threshold screening may use any screen, but the method 
does not have complete control of the gray values making it vulnerable for some 
screens (with rational slopes). lt is recommended to offset the conventional angles by 
7.5'. 

In look-up table (lut) screening a number of pels are collected in an element, which 
has a specific dot pattern for each gray value (and relative position). Either a whole 
dot or part of a dot is determined at each look-up. Look-up table screening generally 
uses rational grid slopes. Hell uses the rational grid slopes (1/3, l/1, 3/1, l/0) with the 
corresponding angles (18.4', 45', 71.6'; 90') to approximate the values of the 
conventional screen (Kekolathi, 1983). This lut screening ties the coordinates of the 
bi-level image and the screen together using a one to one mapping. The lut-elements 
may coincide with the input gray values making steps 1) and 2) trivial. In 
comparison, threshold screening relaxes the relation of the grids by quantizing the 
screen coordinates, modulo the screen cell, giving a many to one mapping of bi-level 
coordinates onto screen coordinates. 

Below a different relation between the coordinate systems is presented. It is suitable 
for description of the new DGP screening method . 

In a halftone image, black dots are observed in highlight areas and white dots in 
shadow areas. The black and white dots are positioned in two displaced grids. The 
black screen dot centers are defined by (x(s,t); y(s,t)), (s,t) = (ij)EZ2 and similarly 
(x(s+t,t+t); y(s+t,t+t)), (s,t)=(ij)EZ2 define the white screen dot centers. 
Rounding of the dot center coordinate values gives the corresponding digital grid 
points (Fig. 1). The prescript digital denotes a discrete representation in the scanner 
coordinate system. 

Figure 1 (from left to right) a) A cell with triangles. b) The digital grid points. c) The 
digital triangles lut-elements. 

Drawing digital straight lines between 4-neighboring digital black grid points 
partitions the plane into digital white cells (Fig. 1). The digital black cells are 
similarly defined. These (approximating) cells do not correspond to a digitization of 
the lines bounding the screen cells nor do they have the uniformity in area usually 
expected in digital halftoning. These problems are partially circumvented by 
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restricting the use of white cells to dominantly dark areas and black cells to light 
areas. Drawing digital straight lines from the digital center of a cell to the four 
corners will partition the cell into four digital triangles (Fig. 2). For a given position 

t 

o white ceO center 
x black ceO center 

Figure 2 White and black cells and triangles. 

of the digital center, the two other digital corners may take on (at most) four different 
digital values. This gives at most 16 different digitiz.ations. The triangles will be used 
when changing the color of the cells. 

The DGP screening gives a resolution of 4 (-8) sub-dots to a halftone cell. 

Using a unique digitiz.ation of grid points and lines, criteria C.2 is satisfied for the 
black and white grids, respectively, and more generally if a partitioning satisfies C.2 in 
the continous domain it will also do so in the digital domain. The used combination 
of the black and white grids given by Figure 3 has been proven to satisfy C.2 as well 
(Forchhammer, 1991). 

A generalization of the cell and triangle partitioning described above is to digitize the 
vertices of a geometric structure (e.g. a hexagon), and draw digital straight lines 
between the digital vertices. Any grid resolution may be used for this. This way the 
digital grid points (vertices) describe the new partitioning, for which reason the 
notion of DGP (digital grid point) is used. 

The new method relaxes the relation between the grids by quantizing the (x,y) 
coordinates of the grid points giving a many to one mapping of screen coordinates 
onto pel coordinates. 

An alternative is to digitize the boundaries of a partitioning, directly. This will e.g. 
give a true digital grid. Generation of square (sub-)cells is analyzed in (Forchhammer, 
1989). 

As described here within the same framework, the differences between the screening 
methods lies primarily in the complexity of facilitating the different features 
mentioned ealier in this section. It might be necessary to modify the methods 
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deviating from the presented framework. in some cases, e.g. by applying error 
diffusion. 

Two details of the screening process have not been treated above. As mentioned, the 
shape of the halftone dots may be described as a two-dimensional threshold or 
priority function S(x,y). In this paper a 2d-cosine shape description is used 

S'(s,t) = cos(2ns) + cos(2nl) 

where the coordinates of the halftone grid s and l are prescribed such that the period 
of S' is one grid cell. S is obtained from S' by ordering the values. This is used directly 
for the priority function. For the threshold function the values are prescribed 
relative to the range of the gray value image. 

When gray values of a digital image is needed at a position different from a sample 
position interpolation is used. Stucki (1979) describes polynomial interpolation of 
order 0, 1, and 3 which are special cases of one-dimensional Lagrange interpolation 
using a polynomium of order N-1 given by N points. 

3. Screening Algorithm and Implementation 

Based on the digital grid point (DGP) description of the previous section, the new 
DGP screening algorithm is described below. 

The triangles of the DGP grid is defined by the digital grid points at its corners. This 
results in triangular Jut-elements of varying size and digital shape. For a specific 
triangle element, the gray value determines the dot size relative to the size of the 
triangle. Quantizing these normalized dot sizes to integer numbers of pels causes 
errors. To reduce the risk. of moire and false contours, error diffusion may be applied. 
Here error diffusion is applied among the four triangles of each cell. 

Based on the gray values of the black. cells, these are segmented into highlight and 
shadow state by thresholding at 50%. Whether to use black. or white triangles is 
determined by the states of four neighboring cells. A state diagram is given in Fig. 3 
and Fig. 4 illustrates the use of cells and triangles to wver the plane. In the 
remaining, a digital cell is only a logical structure and will allways be treated as four 
triangles. 

The new DGP algorithm for screening at arbitrary angle 8 and screen ruling r is given 
below. The operations to be performed may be divided into two. 1) The operations of 
setting up the look.-up table (Jut), given by the angle and ruling of the screen along 
with the halftone dot description. 2) The operations for generating the halftone image 
from the gray value image. 

Algorithm DGP screening (G, 8, r,S) 

//Given a gray value image G, the screen angle 8, the screen ruling r (relative to the 
plotter), and the halftone dot shape description S generates a bitmap of the screened 
image (B)//. 
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Figure 3 State diagram partitioning the image in cells and triangles. 
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Figure 4 Left) State of black cells. Right) Corresponding coverage of plane by cells and 

triangles. 
Set up: 

S.l Generate the digital triangular shapes of the Jut-elements. 
S.2 From the pel priority table based on Sand the digital triangular shapes of S.l 

generate the Jut elements. 

Operation: 

0.1 Determine the gray value of each triangle by first order interpolation from 
the four nearest samples of G. 

0.2 Calculate the cell values as the sum of its four triangles. 
0.3 Segment the cell values in black and white cells at 50% dot coverage. 
0.4 Determine which triangle(s) to use (see Fig. 3) 
0.5 Round off grid point coordinates to determine the triangular shapes. 
0.6 Normalize the relative gray value of triangle i (G;) relative to the pel size of 

triangle i (T;), i.e. D; = G; · T; to determine the dot area (D;) of triangle T;. 
0.7 Insert the Jut-element corresponding to D; of 0.6 and the triangle shape of 

0.5. (Error diffusion is used within the four triangles of each cell, passing 
the round-off error of each triangle on to the next). 
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For the DGP screening algorithm to have any practical value, an implementation of 
the Jut (S.2 and 0.7), which is fairly fast in use without demanding an unrealistic 
amount of storage, has to be found. There are two straightforeward implementations : 

1) To have one version of each triangle mask and use shift operations to situate it at 
the relevant position with respect to the word boundary of the actual 
implementation. 

2) To store each triangle mask once for each possible bit position using a minimum 
of two words for each line of the mask in order to cope with masks that cross a 
word boundary. 

The first solution will be slow unless the hardware performs very efficient bit shift 
operations. This is seldom the case for all-purpose micro-processors. The latter 
solution is very fast in use, but the storage demand is very large. The table size can be 
calculated as n·f·w·l·b·a, where n=4 is the number of triangle orientations,/= 16 is 
the number of digital triangle shapes2, w is the number of positions relative to a word 
boundary (equals the processor word-length), l is the number of lines in each triangle 
mask, b2:2·w/8 is the number of bytes needed for each line and a is the maximum 
triangle dot area. A more general treatment of lut sizes is given in Section 6. 

Using a 32 bit word-length, an average mask length of 10 and a maximum triangle 
dot area of 50 leads to a table size of approximatly 8 Mbytes. 

A resonable compromise can be obtained using indirect addressing together with a 
pattern table of the following structure (Jensen, 1989). Each unbroken bit pattern is 
stored in every shifted version as illustrated on Figure 5. The original lut is then 
replaced by a table where only the addresses corresponding to the unshifted version of 
a mask is stored. The x times shifted version of this basic mask is obtained by adding 
x to each of the stored addresses prior to the table look-up. If a word boundary is 
crossed the part of the mask belonging to the second word is found by subtracting w 
from the already calculated address. White triangles can be obtained from the same 
address table, combining it with a bitwise inverted pattern table. 

With the same parameters as before we get an address table of 128K byte and two 
pattern tables of 8 Kbyte each. Comparing with solution 1) we have replaced x shift 
operation with a single addition and one extra table look-up. This will in general lead 
to a substantial gain in operation speed. 

To return to the question of computational complexity, a more detailed treatment of 
the most time consuming part of the algorithm, i.e. the masking of the triangles into 
the bitmap, will be given. 

The operations that together forms the step 0.7 in the algorithm above can be 
described as follows (to make the description less complicated it is assumed that the 
mask will not cross a word boundary) (Jensen, 1989) : 

2. It is easily implemented with 16 shapes. In section 6 we will show that this 
number can be reduced to 9. 
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10000000000000000000000000000000 
11000000000000000000000000000000 
11100000000000000000000000000000 
01110000000000000000000000000000 

00000000000000000000000000001110 
00000000000000000000000000000111 
00000000000000000000000000000011 
00000000000000000000000000000001 
00000000000000000000000000000000 

10000000000000000000000000000000 
11000000000000000000000000000000 
11100000000000000000000000000000 
11110000000000000000000000000000 
01111000000000000000000000000000 

Figure 5 Pattern table. 

For each line of each triangle mask -

1. Determine the address of the relevant pattern element by look-up in the address 
table: 
adrl = address-table(triangle-number,triangle-form,dot-area,line-number)J 

2. If it is a white triangle, get the address of the triangle outline mask: 
adr2 = address-table(triangle-number,triangle-form,max-area,line-number) 

3. Determine the pattern: 
If it is a black triangle - get the pattern by look-up in the pattern-table: 

patt = black-pattern-table(adrl) 
If it is a white triangle - get the pattern by look-up in the pattern-table and 
combine it with the outline pattern: 

patti = white-pattern-table(adrl) 
patt2 = black-pattern-table(adr2) 
patt = patti 1\ patt2 // bitwise AND operation // 

4. Insert the mask. in the right position in the bitmap: 
bitmap(position) = bitmap(position) v patt // bitwise OR operation II 

Example 3.1: Determine the number of triangle mask line operations (0.7) per pel: 

With a screen ruling corresponding to a 1 VI = 12.3 pel grid vector and screen angle 
B= 15° we can calculate the average number of lines in each mask., I (see Fig. 2): 

Triangle 1 and 3: It =13 = fv'2 /2 ·IV I ·sin(B+45°)1 = 8 
Triangle 2 and 4:12 = 14 = r IV l·cos(B)l = 12 
and so l =(It +12+/3+14)/4 = 10 

The average number of pels per triangle line equals IV 12
/( 4 ·I)= 3. 78 and the inverse 

of this is the average number of triangle mask line operations per pel: 
(4 ·I)/I v 12 = 0.264 

3. If it is not the first line of the mask, then this look-up can be simplified by 
adding the size of one address table element to the address of the former address table 
element. 
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From this calculation and knowledge of the time consumed for each mask line 
operation (which depends on the hardware used), it is possible to estimate the 
processing time for one output (plotter) pel. 

The DGP screening algorithm has been implemented on a transputer system, 
consisting of 17 !NMOS T800 transputers each being a 17MHz micro processor with 
on-chip floating point unit and advanced communication facilities. 

For the purpose of parallelization, the algorithm has been organized according to a 
division of the (plotter) bitmap into blocks (of 256 by 256 pels). The blocks can be 
treated independently though some redundant screening has to be done at the block 
borders to ensure coverage of the bit plane. The part of the gray value image needed 
for screening of a block can be located from knowledge of the halftone screen 
parameters, the number of gray level pixels used for each halftone cell and the block 
position in the bitmap, and distributed to the relevant processor. In addition, it is 
important for the choice of an efficient parallel alorithm that the calculation time 
spent on each block is independent of the actual image data and therefore 
approximately constant for all blocks. These facts make it possible to obtain an 
efficient parallization with a simple vectorization scheme i.e. a balanced distribution 
of the blocks to the processors which perform the algorithm(/calculations). 

The block structure simpliftes the traversing of the bitplane, following the halftone 
grid inside one block at a time. 

4. Image Results and Quality Evaluation 

The results of DGP screening applied to a test image is shown in Figure 6. Figure 7 
shows the result of applying threshold screening. 

The gray value test image has a resolution twice the screen ruling, which is ca. 40 
lines pr. em. The screen ruling comes from using a screen vector of 12.3 and plotting 
at 1270 dpi. 

To evaluate the image quality, the following four qualitative metrics are used (Stoffel, 
1981): 

global tone gradation 
local tone gradation (details in highlight, shadow and midtones) 
sharpness at edges 
evenness/uniformity characterized by the absence of artifacts, disturbances, and 
Moire. 

The screening proces is an interaction of its elements, here, the scanning of the gray 
value image, unsharp masking, interpolation of gray values (for DGP screening) and 
the plotting. Therefore, one test image gives an idea but not the complete picture of 
the quality of a screening method. 

Threshold screening is best at rendering line work, with a remarkable sharpness of 
line contours, whereas DGP screening (partly due to the first order interpolation of 
gray values) filters the image giving a smoother image. In the test image a high degree 
of USM (unsharp masking) was applied. This causes the threshold screening to get an 
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Figure 6 DGP screened image. 

almost linelike appearance at the edges, which may be considered overdone in this 
case. 

5. Analysis of Quantization Effec ts o n Quality 

Moire effects of screening methods are generally most visible in areas of constant 
luminance. (We will not here consider moire effects dependent on the texture of the 
o riginal image.) 

For a screening process with rational grid vectors (with Vt = (p) q,p/ q) for a regular 
grid) we have a two-dimensional period of the digitization process with area q. The 
period in each coordinate is a parallelogram described by two integer vectors in the 
halftone coordinate system. To the extent that , for a constant gray value, there are 
relative dot area variations within the period we get a moire effect with this period . If 
irrational grid vectors are used, quasi-periods occur. The quasi-periods may be related 
to the one- or two-dimensional continued fractions of the vector coordinates 
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Figure 7 Thresho ld screened image. 

(Forchhammer , l988a). For a rational grid there will also be quas i perio ds 
corresponding to rational approximations with smaller denominato r . The better the 
approximations, the longer the extent of the quasi period, and thereby the higher the 
risk of moire to occur. The analysis of the periodicity has to be co mbined with an 
analysis of the pattern of variations within the period to give a ful l analysis of this 
moire effect. 

In case of large periods, it will be the possible moire within the period that might 
show. 

Example 5. 1: At 45' one of the vectors in screen coordinates is (l , l ), i.e. the diagonal 
of a grid cell , regardless of the screen ruling. This way we get a o ne-di me nsio nal 
structure of rounding up and down the grid point coordinates. 
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a) With a sc reeen ruling corresponding to a lVII = 12.7 pel grid vector , the diagona l 
of a grid cell becomes 12.7·v'2-17.9605-17 24/25 which gives a 449 pel quasi 
period (see Fig. 8.a). 

b) For 1 V 1 1 = 12.5 the figure becomes 12.5 ·v'2- 17.678- 17 2/3 giving a 53 pel quasi 
period (see Fig. 8.b ). 

Figure 8 Shadowing and moire effeclS in halftones. Screening at 45° with a ruling (left to 
right) a) 1112.7 pels and b) 1112.5 pels. Periodic effeclS may be noticed. The effects of b) 

are eliminated in c) using normalization. 

Example 5.2: Screening with a screen a ngle of 9= IS· and a ruling corresponding to 
I V 1 1 =I V 2 1 = 12.5 pels we have the grid basis vectors measured in pels 
(12 .5 ·cosl5.,12.5·sinl5•) and (-12.5 ·sinl5.,12.5·cosl5\ where 12.5 ·cosl5• = 12.0741 
and 12.5 ·s in 15• = 3.2352. For (s,t) = (3 ,1 ), x(s,t) = 32.9870-33 which giving a quasi 
period of (s,t)=(3.1) for the x-coordinate and the orthogonal (s.t)=(-1,3) for they­
coordinate (see Fig. 9). 

Figure 9 Left) Threshold screening: A moire panem may be notic~d· ~~ tlze top 
image. Right) DGP screening of t/ze same image using the same screen 

The moire of example 5.1 was eliminated by normalizing the triangle value and 
app lyi ng error diffusion within the cell (Fig. 8.c). Other deterministic methods are to 

31 



pre- or post-proces the look-up table elements by e.g. deviating from a fixed screen 
function. 

Some measure of moire reduction would be desirable in the threshold screened image 
in Figure 9. The artifact does not occur in the DGP screened image. 

More stochastic approaches include a randomization of (addition of noise to) the gray 
values and/or the grid coordinates. 

The deterministic methods are to be prefered as they are to a certain extend 
'predictable'. If they are not sufficient, the stochastic methods may solve the problem. 

6. Complexity 

The complexity of an algorithm may be measured in terms of storage requirements 
and computational complexity. As illustrated in Section 3, it is possible to make a 
trade-off between these two terms. 

This section will focus on the size of the look-up table and there-by the storage 
requirements of the proposed screening methods. The size of the look-up table is 
related to the digitization(/quantization) of the (geometric) structures. Therefore, a few 
concepts from digital geometry will be introduced before proceeding (Forchhammer, 
1989). The digitization process of a continuous object(/structure) onto a set of digital 
points (values) is a many to one mapping, i.e. several different continous objects 
maps onto one set of digital points. This also accounts for the loss of information in 
the digitization process. A digital object is a set of digital points possibly with some 
attributes e.g. that the preimage is a square. All the preimages of one digital object is 
called the domain of the object. On one hand, the digitization process is a many to 
one mapping. On the other hand, translating and digitizing a continous object may 
result in digital objects different under translation. Digital sets different under 
translation have different shape. The number of shapes could correspond to the 
number of entrances to a look-up table. 

One important geometric structure in screening is the grid. In threshold screening the 
pel (grid) coordinates are digitized onto a sub-halftone grid. In DGP screening, the 
halftone grid points are digitized onto the pel grid. Having n continous grid points 
there are at most n2 different shapes. For the four corners of a square this gives 16 
shapes. The number is 9 for the three corners of a triangle (the 16 triangle shapes 
used in our look-up table are more than enough, thereby allowing for the use of a 
polynomial grid with a slight variation). Dividing the halftone cell into polygons 
would give at most the summation of n2 for each polygon entrances in the look-up 
table, e.g. dividing the cell into four triangles gives 4 · 32 = 36 look-up table shapes 
(though they may be obtained by rotation of a multiple of 90° from the 9 basic 
shapes). If the digital grid points defining the look-up table elements do not align with 
the halftone grid, then for each shape the different positions relative to the halftone 
grid have to be represented. 

As mentioned in Section 2, instead of using the digital grid points to describe the Jut 
elements, digitization of the (grid) lines of a mathematical description could be used. 
Analysis of this digitization and fast methods for the square (sub-)cells of a regular 
grid is given in (Forchhammer, 1989). Let p denote the side length of the square 
measured relative to the digitization grid e.g. the pel grid. The number of shapes is 
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asymptotically upper bounded by 4 ·p2, a figure that seems to hold well for smaller 
squares when the angle is not rational. 

Example 6.1: In Figure 10, the number of shapes for a square oriented at 15° is shown 
as a function of p. The number is very close to 4 ·p2 e.g. considering integer side 
lengths in the range 4-20, the number is 4p2 + 4 for p = 5, 9, 11, 13, and IS and 
exactly 4p2 for the rest. With a screen ruling of 12 pel and four subcells to a cell, p = 6 
for the sub-cell resulting in 144 element shapes for each of the four sub-cells. (Each 
of these will again take on ca. 36 + 1 different dot areas). 

The function is piecewise monotonic, dropping for certain values of p. These values 
correspond to the situation where the square may be placed with more than one 
digital point, at the same time, exactly on the edge. 
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Figure 10 The number of different digital shapes for a square as a function of the side 
length p for a given angle of 15°. 

One interesting thing about the number is that a sub-division of the halftone cell in 
smaller squares will not increase the total number of shapes as it is proportional to 
the area. Actually, the size of the total look-up table becomes smaller as each element 
becomes smaller. Fast algorithms to determine the number of shapes for given angle 
and side length are also given in (Forchhammer, 1989). 

The screening process might be speeded up by using rational approximations which 
allows for the use of integer arithmetic. With a grid basis with rational vectors having 

33 



common denominator q on irreducible form the number of shapes is strictly upper 
bounded by q2 as the shapes are related to the fractional part of the coordinate values. 
This gives two upper bounds on the number of square shapes in a given 
implementation. 

The DGP screening process may also be speeded up using rational approximation and 
integer arithmetics. 

7. Extensions 

A number of extensions to improve the resolution and/or the reproduction at the 
edges is proposed below. 

If higher resolution of the screening method is needed, the halftone grid points may 
be generalized to any set of points giving a limited number of look-up table elements. 
The most tractable would probably be 

1) points of a regular grid oriented as the halftone grid with a fixed (quadratic) 
number of points and thereby elements to a cell. A partition of the cell into 4, 9 
or 16 sub-cells/quadrangles could be reasonable. 

2) the same as in 1) but using triangular subcells. Here the cell could be divided 
into a power of 2, e.g. 2, 4, 8, 16 subcells. 

Using look-up table screening with elements which are not symmetric with respect to 
the center. it becomes more difficult to control the gray value if the high resolution is 
to be maintained, with threshold screening as the extreme example. 

So far the shape of the Jut element and one gray value has been the input of an 
element to determine the pel pattern. This may be modified to imitate the effect of 
higher resolution. Using black and white triangles, the decision rule of using two 
white or two black triangles covering the same area (as in Fig. 11) may be that the 
line between the triangles should be perpendicular to the direction of the largest of 
the two derivatives (in the s and l direction) in order to follow the possible edge. This 
idea may also be used within the Jut elements using the direction of the gradient at 
edges as an input, having directional elements possibly combined with a reduced 
number of gray values. Other possibilities would be to overwrite the triangle elements 
of different color or to use threshold screening at edges. This would be an image 
dependent screening . 

• Figure 11 Ideal screening of line work (a) using square elements (b) and triangular 
elements (c). 

When the digital grid points are used to define the look-up table elements, other grid 
descriptions as a (2. order) polynomial grid description (Forchhammer, 1988b) could 
be used and as mentioned, this will not complicate the look-up table elements much. 
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The polynomial grid could reduce the risk of moire under certain conditions by 
introducing randomness at grid point level. 

8. Conclusion 

A new method of digital screening has been developed. It is based on the digitization 
of grid points. In some sense it is a hybrid of threshold and look-up table screening. 
By quantizing grid points it is possible to specify arbitrary angles and rulings as in 
threshold screening. The quantized grid points are used in combination with the gray 
values to form the argument of a look-up table, which offers better possibilities of 
controlling the gray values. 

This combination may be advantageous in some cases. One drawback of the method is 
that it is more complex than the two other methods. 

In shadow and highlight, the DGP method has a resolution equivalent to eight 
samples to a halftone dot. For edges (and midtones), the resolution is closer to four 
samples per halftone dot. The new method may be improved by special treatment at 
edges e.g. by introducing directional elements at edges. 
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