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Abstract. The rosette structure in the traditional halftoning technique 
for four color printing is normally fixed, but it can also be periodically 
variant when moire is present. The two extreme appearances of the 
rosette have been described as "clear'' and "do(' centered. In this paper 
the morphology of the rosette is discussed in depth, and its relation is 
investigated with color balance. An improvement is presented of the 
traditional halftoning system that both minimizes the visibility of the 
rosette and optimizes color balance. 

Introduction 

The goal of rotating the halftone screens in traditional four color 
printing is to provide a pseudo randomization of the relative position 
of the halftone dots in the different separations in order to make the 
average amount of overlap between the dots - and hence the color 
balance - less registration dependent. 

The problem of moire in four color printing was studied in ref. ( 1 ). It 
was shown by means of a vector diagram in the frequency domain that 
no low frequency moire occurs if the screening angles and frequencies 
of the cyan, magenta and black separations are selected so that their 
corresponding vectors form a closed triangle. (The light absorption of 
the fourth color, yellow, is usually low enough so that its interferences 
with the other colors are not objectionable, so it is left out from this 
discussion.) This condition is particularly met in the traditional 
screening system in which the frequencies of these separations are all 
equal, and in which the angles are different by exactly 120 degrees. If 
for some reason (for example angular misregistration) the vectors in 
the frequency diagram do not form a closed triangle, a low frequency 
moire will occur of which the angle and frequency are predicted by the 
opening in the triangle. 
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The analysis in ref. ( 1) did not include the effects of the harmonics of 
the screens, and neither did it extensively describe the effect of the 
relative register - or, as it will be referred to, phase - between the 
screens. Figures 1a and 1 b demonstrate that the latter should not be 
neglected. Both show a moire free combination of the same set of 
three screens, but with different relative phases with regard to each 
other. The "micro moire", commonly referred to as the rosette is 
totally different. The one in Figure 1a is called "clear centered", as 
opposed to the other one which is called "dot centered". 

Figure 1: Two moire free combinations of the same set of three screens. The 
upper set (a) shows a clear centered rosette, while the lower one (b) has a dot 
centered rosette. 

In this paper the morphology of "the rosette" in four color printing is 
investigated as well as its effect on color balance. Such a study requires 
to look at both the amplitude and phase spectra of the Fourier 
transform of the traditional halftoning system. Since an elaborate 
mathematical elaboration would require the use of long and heavy 
expressions which would make this paper difficult to read, the text 
will concentrate on the qualitative interpretation of the findings. The 
complete derivation, however, will be published at a later date. 
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A first and second part of this text concentrate on the relation in 
traditional halftoning between the relative register of the halftone 
screens and the visual appearance of the "rosette". In a third part, the 
color balance with the clear and dot centered rosette structure is 
compared with the predictions as made by the Neugebauer expressions 
when relative randomization of the halftone dots is assumed. Finally, 
an improvement is suggested in the last part of the text to the 
traditional four color halftoning technique that optimizes color balance. 

PART 1 

Fourier analysis of a single screen 

The Fourier spectrum of an amplitude modulated dot screen with 
origin (x0 ,y0 ). with a period T, an angle a, and square halftone dots 
with width w can be calculated and is expressed by the summation of 
terms which are the product of three functions: 

2 ,~-+a. 
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The significance of these three functions is easily interpreted: 

1. The first function ~(fx,f~,T,a,n,m) indicates that the only 

frequencies at which the Fourier spectrum has a non zero value are 
the DC component, the two orthogonal fundamental screen 
frequencies, their harmonics and all the combinations of the latter. 
From this follows that the power spectrum of a grid of halftone dots 
consists of a grid itself. 

2. The second function F2 (T,w, n,m) predicts the amplitude of the 
different frequency components. The amplitude of the "DC 
component'' (corresponding to n=m=O) is equal to w2 I T 2

• The 
amplitude of the other frequency components diminishes as they 
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contain higher order harmonics. The exact nature of the second 
function depends on the actual dot shape, and only corresponds to 
the "sine" function if square dots are used. As this becomes 
important in the remainder of the text, it should be noted here that 
the width of the "lobs" of the sine function becomes wider as the 
tone scale approaches its extremes. More specifically does this 
mean that the amplitude of the harmonics decreases less quickly 
(does even not decrease at all in the limit case) and reverses its sign 
less often when the tone value of the screen approaches 0% or 
100%. As the rosette pattern will turn out to be a product of 
interactions between these harmonics, it will be shown later on that 
this effect is responsible for an increased or decreased visibility of 
the rosette patterns near the ends of the tone scale. 

3. The third function F3(n,m,x0 ,y0 ) is always equal to a complex 
number of which the modulus is equal to 1. This term contains 
only information on the phase of the corresponding frequency 
component. As the formula shows, the phase of an individual 
frequency component changes linearly with the degree of the 
harmonics it contains. This is to be expected since it also means 
that the relative phase relation between the different frequency 
components, and hence the visual appearance of the screen, is not 
affected by a shift of the origin of the screen. 

A representation of the Fourier transform is depicted in Figure 2. The 
dots in the drawing represent the position in the two dimensional 
Fourier domain where energy is present. With every dot a complex 
number is associated that corresponds with one of the terms in the 
Fourier expression above. The size of the dots is to be interpreted as a 
measure for the modulus of the corresponding term. There are two 
special cases in which the phase factor F3 (), normally a complex 
number, becomes real: When x0 =y0 =0, F3() becomes .:t..!_ for all the 
frequency components. However when x0 =y0 =0.5, F3() has a value 
that alternates between .:t..!_ and :l. depending on the order of the 
harmonic component. An attempt to represent the distinction between 
these two special cases was made by making all the dots in Figure 2a 
black, while they alternate between white and black on Figure 2b. 
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(a) (b) 
Figure 2: Representation of the Fourier spectrum of a single screen. The origin 
of the screen in (b) was shifted by half a period along its x and y directions. 

The fact that shifting the origin of a halftone screen causes the sign of 
certain harmonics to change may look strange at first. The same 
however happens in the one dimensional Fourier domain where a shift 
of the origin over half a period of a signal with period T results in a 
change of the sign of the even harmonics. This is illustrated by means 
of Figure 3. 

Figure 3: A shift of the origin Xo over half a period T/2 causes the sign of the 
even harmonics of a periodic signal to reverse. 
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Fourier analysis of three cumulative screens 

The four color printing process is based on the use of four screens that 
absorb different parts of the visual spectrum. Because of the "side 
absorptions", however, there is a substantial part of the visual spectrum 
in which the absorptions of the black, cyan and magenta inks overlap. 
The combined absorption at every wavelength in this part of the visual 
spectrum equals the product of the absorptions of the individual 
screens. The theory of Fourier analysis teaches that in such a case the 
Fourier spectrum of the combined absorption is obtained by convoluting 
the Fourier spectra of the individual absorptions. This is how the 
following expression was obtained of the Fourier spectrum of the 
combination of three screens with a period T, angles a ~,a 2 ,a 3, 

dotwidths wl'w2 ,w3 and positions (x,,y,),(xl'y2 ),(x3 ,y3 ): 

::T(f,,~, T,a l'a 2 ,a 3 , W 1, w2 , W 3,X1, y,, X 2 , y2 ,x3 , y3 ) = 

::T(f,,~, T,a 1, w., xl' y,) ®::T(f,, ~' T,a 2 , wl'x2 , y2 ) ®::T(fx, f~, T,a 3 , W3 ,X3 , y3 ) 

in which the symbol ~refers to the "convolution operation". 

Working out this expression leads to: 
wz wz u/ .,,,lr,l.p.q=+GJ 

9'0 =--+·~·---+ I:c,o•c,o·c3o 
T T T •. m,o,t,p.q---

in which: 

G,() =F.(f,,~,T,a.,n,m) ®F.(f,,~,T,a 2 ,k,l) ®F.(fx,f~,T,a 3 ,p,q) 
G2 () =F2 (T,w.,n,m) * F2 (T,w2 ,k,l) * Fz(T,w3 ,p,q) 

G
3
() =e-i!'"( .... ,~,-+U,~,..,,,""!'',l 

The three functions G1(),G2 (),G3 () can be interpreted in a similar way 
as for a single screen: 

1. The first function G1() indicates that the combined Fourier spectrum 
is non zero at all possible vectorial additions of the frequency 
vectors in the original spectra. 

2. The second function Gz() expresses the amplitude of each of these 
frequency components. It is important to remark that the amplitude 
of the DC component in this case is not only determined by the 
DC component of the individual screens (n=m=k=l=p=q=O), but also 
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by the amplitude (and phase ... ) of some of the other components! 
In fact, all the components from the three screens that, when 
vectorially added together, form "closed triangles" will contribute to 
the DC component of the combined halftone. 

3. The third function G3 () once again consists of a complex number 
that represents the phase of the combined frequency component. 
As the expression shows, this phase depends on the position of the 
origin of all three screens of which the combined halftone consists. 
The phase is not a linear function of the position coordinates of the 
individual screens, and this already suggests that the way that the 
frequency components add up, and hence the visual appearance of 
the combined halftone, will be affected by register. 

As is shown in the next part, it is the latter property that alters the 
appearance of the rosette as a function of relative shifts between the 
screens. 

PART2 

Visual appearance of dot versus clear centered rosette 

Before proceeding to the actual discussion, a number of conventions 
and a consistent nomenclature have to be agreed on. In what follows, 
the values 0 and 1 refer to the darkest and lightest tone values 
respectively. Areas where the halftone screen is "white" are called 
"white halfdots", as opposed to the "black halfdots". The power 
spectrum in the Fourier domain is to be interpreted as the periodic 
presence of white halfdots. A relative coordinate system is placed with 
its origin at the center of a white halfdot. 

One of the strongest interference patterns appears when the values 
(xl'y,),(x2 ,y2 ),(x3 ,y3 ) are all equal to zero. This corresponds to the 
situation in which the origins of all three screens are aligned with 
regard to each other. Except if (at least) one of the screens is 
completely dark, this combination will always leave the origin white, 
and corresponds to the clear centered rosette. The value of the function 
G3 () for this case is always a positive, real number equal to 1. 
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A dot centered rosette is formed when the centers of black halfdots 
coincide. This configuration is obtained from the clear centered rosette 
by shifting the origins of each of the three screens by half a period in 
their respective x and y directions. The total amount of phase shift in 
this case of a combined frequency component is expressed by 
e -;!'llt(o.s .. -IO.s.-IO.sHo.sHo.sp-IO.sqJ. This equation can be simplified to 

( -i)'"""'""'-11-iF-Irf. This value is also real, but it can be positive or negative 
depending on the order of the harmonics that contribute to the 
frequency component. 

One example where a shift of the origins with half a period is 
implicitly performed is when the polarity of a set of screens is 
reversed. A clear centered rosette is transformed into a dot centered 
one by this operation and vice versa. 

A graphical representation of a set of three screens in the clear 
centered configuration is shown in Figure 5. In order not to overload 
the drawing, only the frequency components of the individual screens 
are shown. The additional components that are introduced as a result 
of the convolution and that are responsible for the origination of the 
rosette structure can be thought of as all the possible vectorial sum 
and differences between the original components. There are places 
(indicated by the circles) where these original components are quite 
close together, and these combinations will give rise to interactions 
with frequencies that are much lower - and therefore much more 
visible - than the frequencies of the halftone screens themselves. 

The clear and dot centered rosette configurations have some quite 
opposite aspects that are now discussed. 

The clear centered rosette is more visible in the shadows. 

It was mentioned already that in the Fourier expansion of the 
combined spectrum the phasefactor G3 () is equal to +1 for all the 
terms in the case of the clear centered rosette, while it alternates 
between + 1 and -1 for the dot centered configuration. Especially in the 
shadows, where also the sign of G2 () is positive for most of the terms, 
the summations therefore lead to higher values for the amplitude (and 
power) of most of the Fourier sums with the clear centered rosette, 
and hence to more visible structures. 
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Figure 4: Fourier components of three screens in clear centered phase 
configuration. 

This can also be understood by looking at the drawings 4 and 5. In 
the first drawing (corresponding to the clear centered rosette), the 
amplitudes of all the components in the original screens are positive, 
and they will add up with each other, resulting in a powerful 
interaction. Inversely will the positive and negative signs of the 
amplitudes in the second drawing sometimes cancel out each other, 
resulting in less powerful interactions. 

One special case of this effect is that the "DC' value of the Fourier 
spectrum of the 'clear centered rosette has a higher value than for the 
other rosette structures. Similarly is this the case for many of the other 
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Figure 5: Fourier components of three screens in dot centered phase 
configuration. 

components, including low frequency ones, and this explains why, in 
the shadows, the clear centered rosette produces the more visible 
structure. This effect is only supported by the fact that a correlated 
structure of white spaces is particularly visible in dark areas. 

The dot centered rosette is more visible in the highlights. 

Since the clear and dot centered rosettes are each other phase 
opposite, the exact opposite reasoning can be made for the black dots 
in the highlights: the dot centered rosette gives rise to patterns of 
black dots that create more objectionable structures in the highlights 
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Figure 6: The smallest black structure in the highlights is larger for the dot than 
for the clear centered rosette. 

than the clear centered rosette. An observation that supports this 
statement is demonstrated in Figure 6: the smallest black structure in 
the highlights is larger for the dot (2 times the screen period). than for 
the clear centered rosette( .Ji times the screen period) making the first 
one more objectionable. 

There is a difference in the amount of paper covered along the 
"equidensity" axis. 

The equidensity axis contains the colors with equal tone values for the 
individual screens. The difference of paper coverage using different 
rosette structures along this axis is illustrated by means of Figure 7. By 
means of a computer experiment, the percentage of non covered paper 
was counted along this wedge and is plotted. While the clear centered 
rosette leaves a significant portion of the paper uncovered up to I 00%, 
this is not the case with the dot centered rosette. 

This result can be understood in the context of the phase relations 
between the dots. The white portions of the paper are only saved by 
the three screens if they all produce white. Therefore this happens 
more often when these portions are in phase with regard to each other 
which is particularly the case for the clear centered rosette in the 
shadows. 

It is also possible to verify that the DC component of the clear 
centered rosette is larger than that of the dot centered rosette by 
looking at the terms in the general expression that contribute to the 
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Figure 7: DC component of clear (a) and dot (b) centered rosette along 
equidensity axis. 

"DC' term. This "DC' term consists only of these combinations of 
fundamentals and harmonics of which the vector sum adds up to a 
vector with zero length by forming a "closed triangle". It can be shown 
from the general expression above that the "DC' component in the 
case of the clear centered rosette is expressed as a function of the dot 
area (w I T)

1 of the contributing screens by the following formula: 
w 3 

·- ~- w(n +m) w(m -n) 
9'("DC,equidensity,clear") =-3 ~ ~ {sinc3

( .J2 , .J2 )} 
T ·=-·=- T 2 T 2 

and for the dot centered rosette by: 
w3 

·- ·- w(n +m) w(m -n) 
9'("DC,equidensity,dot") =-3 [ [ {(-lY".,.1 sinc3

( .J2 , .J2 )} 
T ·=-~=- T 2 T 2 

The evaluation of the above expressions was found to be in exact 
agreement with the results from the computer experiment shown in 
Figure 7. 

12 



8 D(CIE_coord.) 

6 

4 (a) 

2 

0 % 
I 
I 

-2 75 

-4 

6 D(CIE_coord.) D(E) 

4 
(b) 

2 

-2 100 

-4 D(b*) 

Figure 8: The Lab values along the equidensity axis differ from the colors as 
predicted for stochastic screening with both the clear (a) and dot (b) centered 
rosette. 

Different rosette structures require different color calibrations 

It has been observed in practical situations that the rendering of 
neutral colors tends to be too magenta if a dot centered rosette is used 
and too green with a clear centered rosette. In the presence of moire, 
a low frequent component oscillates between these two colors. This 
means that, in theory, the calibration of a color separation process is 
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specific for a given type of rosette, and is not by default compatible 
with the calibration for a stochastic screening method. A quantitative 
discussion of the difference in color is discussed in what follows. 

PART 3 

Color shift with dot versus clear centered rosette 

The printing with three inks and three halftone screens results 
theoretically in 8 possible combinations of ink overlap. The 
Neugebauer expressions predict the resulting color as a linear function 
of the colors of these combinations. The Neugebauer equation for the 
X tristimulus value in a three color printing process is: 

The terms x;;~ are the X tristimulus values of the corresponding 

overprints. The Neugebauer expression for the Y and Z tristimulus 
values are obtained by replacing the the X tristimulus values by the 
corresponding Y and Zvalues respectively. If it is assumed that the 
relative positions of the halftone dots is random, the Neugebauer 
coefficients a..., can be calculated from the Demichel equations that 
predict the fraction of each combination of the three inks as a function 
of their respective dot percentages cu c2 and c3 , and this leads to the 
Neugeauer equations in their most often encountered form: 

a., =(1 -c)*~ -cJ* (1 -c3) 

a1 =t)* (1 -c2 )* (1 -cJ 

a2 =(1 -c1)* ~z)* (1 -c3) 

a3 =(1 -cJ* (1 -cJ* ~3 ) 
az3 =~ -c~)* ~J* ~3) 
al3 =~J* (1 -cz)* ~3) 

a12 =~)* ~J* ~ -cJ 

am =~~)* ~J* ~3) 

Instead of assuming, like in the Demichel equations, that the dot 
positions of the three colors are randomized, it is also possible to 
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calculate these coefficients by counting in a computer experiment the 
fractions of the different ink combinations obtained with the 
conventional screening system using either the clear or dot centered 
rosette configuration.These coefficients can than be used to calculate 
the CIE XYZ or Lab colors along the equidensity axis using the black, 
cyan and magenta primaries of, for example, Agfa's proofing system. 
Figure 8 shows how the Lab values of these colors as predicted for the 
clear or dot centered rosette structures differ from the colors calculated 
from the Dernichel equations. Both plots also show the total visual 
difference Delta_ E between the predictions. The largest color 
differences between the colors calculated from the reference colors and 
the colors obtained with clear or dot centered rosette are found around 
the 70% dot value on the equidensity scale. Around this value, the 
clear centered rosette produces a color that is too light (L * too high) 
and too green (a* too low). The dot centered rosette produces colors 
that are too dark (L* too low), and too magenta (a* too high). 

The values that are shown in Figure 7 and 8 should certainly be seen 
as maximum deviations that only occur for the purely dot or clear 
centered rosette, and for equidensity colors. As soon as one of these 
conditions is not met, the deviations become smaller. In addition does 
the "softness" of printed halftone dots explain why the color deviations 
in practical situations are usually smaller than what is predicted by the 
curves in these figures. 

PART4 

Randomizing dot centers reduces rosette structure. 

It should be clear from the previous explanation that the visibility of 
rosette patterns is particularly an issue at the extremes of the tone 
scales, where the amplitude and phase of the harmonics that are 
responsible for their origination change least quickly with their order 
and therefore amplify or cancel out each other most strongly. A 
solution that was found to be effective in reducing the visibility of 
these patterns i's the addition of a random phase vector to the position 
of each dot center. Such a random vector breaks up the phase 
coherence that exists between the harmonics that are normally 
responsible for the rosette formation. A refinement of this technique is 
applied in the Agfa Balanced Screening Technology and consists of 

15 



Figure 9: Degrade with variable rosette structure. 

changing the modulus of this vector in a tone dependent fashion, 
thereby achieving the suppression of the rosette structures in 
combination with an optimal signal to noise ratio of the halftones. 

Tone depenaent phase modulation 

In the above discussion, the effect of the rosette has been discussed on 
both the visibility of its structure, and on color balance. It was shown 
that, with regard to the first criterion, the clear centered performs the 
best in the highlights and the dot centered rosette in the shadows, but 
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Figure 1 0: Modified halftone screen generator includes tone dependent phase 
modulation. 
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that both configurations produce opposite color deviations on the 
neutral scale in the midtones. These observations have lead to research 
the possibilities of using a variable rosette structure. By varying the 
rosette structure in a tone dependent fashion, its visibility could be 
optimized in both the highlights and the shadows, and in addition 
could the neutral balance be improved. Figure 9 gives an example of a 
degrade that was generated this way. 

Such a tone dependent rosette structure is for example achieved by 
modulating the phase of each of the individual screens as a function of 
the tone value. In order to obtain the two extreme opposite rosette 
configurations for the minimum and maximum dot percentages, a 
maximum shift of the center of (0 .5,0 .5) along the internal diagonal of 
each of the three screens is required. It can be shown that, by 
optimizing the amount of phase shift as a function of tone in between 
these two extremes, it is possible in theory to obtain exactly the same 
color balance as predicted by the Demichel equations. This means that 
now the same color balance can be obtained in combination with 
either a moire free conventional or a stochastic screening method . 
Experimental data, based on both computer experiments and 
measurements on real samples have fully supported this important 
conclusion. 

Several methods exist to modulate the phase of a screen as a function 
of tone. In one method, a tone dependent bias is added to the 
coordinate values that address the screen function in the screen 

Figure 11: Spotfunction with (a) and without (b) built in phase shift. 
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generator. Figure 10 depicts a halftone generator that was modified 
according to this principle. In a second method, the tone dependent 
phase shift is built in the screen function itself. Figure 11 shows a 
representation of a screen function with and without such a tone 
dependent phase shift. The latter method has the advantage that it can 
be implemented on most existing screening hardware and software 
devices, including all PostScript RIP's. 

CONCLUSION 

In order to study the visibility of rosette patterns, it is necessary to 
include the effects of the harmonics of halftone screens. The 
harmonics all add up in the shadows with the clear centered rosette 
and in the highlights with the dot centered rosette, producing 
objectionable patterning. Both rosette types produce opposite color 
deviations in the mid and three quarter tones compared with stochastic 
screening. By making the rosette structure tone dependent, its visibility 
can be minimized in both the highlights and the shadows, and the 
color balance can be made identical to the color balance obtained with 
stochastic screening. A tone dependent rosette is achieved by 
modulating the phase of the halftone screens as a function of tone. 
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