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Abstract : Since the adoption of CIELAB and CIELUV in 1976, several 
other uniform spaces have been developed. We evaluated most of them by 
making use of visual data and found that they could he divided into two 
different classes, i.e. spaces to predict small colour distances and spaces 
to calculate larger differences. We indicated the main difference between 
both classes and constructed a simplP Colour DifferencP Formula (CDF) 
for small colour diffPreuces. 

In contrast to grPy image processing techniques, almost no attention has 
been paid to colour imagP processing. Therefore we determined some basic 
rules to adapt grey image processing procedures for colour images is such 
a way that the images are handled in agreement with the human visual 
system. This was mainly done by making use of tristimulus spaces and 
uniform colour models. However, as opposed to what was expected, it is 
almost impossible to detect differences between most uniform spaces even 
if they differed significantly according to visual data. WP indicated that 
this was mainly due to non uniformities of the colour spaces, non modelled 
visual effects and quantization errors. 

Based on this evaluation we recommend the use of different spaces for 
the determination of small and larger colour differences. The chosen spaces 
should be mathematical stable and simple. A good candidate for small 
resp. larger colour differences is CDF, resp. CIELAB. 

Uniform colour spaces 

Tristimulus spaces (Wyszecki, 1982] are mainly used to specify colours. 
They indicate if two colours match, but they cannot predict visual differ­
ences if no match is obtained. To calculate psychometric differences uniform 
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spacPs should IJP usPd. HowPvPr, thesP scalPs arP cliftin!lt to modPI. As a rP­
sult. quitP a lot of othPr uniform colour spacPs havP bPPn constructPd sincP 
tlw adoption of CIELAB and CIELUV by thP CIE in 1976 [CIE,l9S6]. 

Most uniform colour spaces arP zonP models [WyszPcki,19S:2]. ThPy con­
sist of diffPrPnt zonPS, Pach rPprPsPnting a particular [HOCPssing unit of thP 
Human Visual SystP!ll (HVS). All thP PValuatPcl mcHIPis arP built up of two 
zonPs. ThP first zonP modPls thP colour valuPs gPt!PratPd by thP thrPP diffpr­
Pnt kind of couPs, i.P. thP tristimulus val uPs. Iu thP sPconcl zonP thPsP vahiPS 

arP transformPcl non linParly bPforP they arP combinPd into onP achromatic 
channPl and two chromatic channP]s, i.P. a rPd-grPPil and yp]]ow-b]uP sig­
nal. WP studiPd most zonP models dPvPlopPd aftPr thP stauclarclizatiou of 
('IELAB and CIELUV. ThPsP arP La.hhmi [RirhtPr,19SO], thP spacP of FrPi 
[PrPi,l977], ATD [<;uth,Hl!·W]. thP spacP of SPilll and ValbPrg [SPim.I9S6], 
OSA 7S [MacAclam,l97S], OSA 90 [MarAclam,1990]. thP llH)(IPl of Nay­
atani [Nayatani.l9S7] and thP moc!Pl of Hunt [Hunt,l991]. Also HuntPr 
Lab [WyszPcki,19S:2], a spacP dPvPiopPcl hPforP 1976, is stucliPcl bPcansP it 
is still oftPn usPcl in industry [KuPhni,l990]. 

Apart from thPsP zonP moc\Pls also somP colour distancP formulas havP 
bPPn constructPd to prPdict colour diffPrPncPs of about a .Just NoticPahlP 

DifferPncP (.JND). ThP studiPd colour distancP formulas arP FMC!, FMC:l 
[ChickPring,l971), CMC(0.7:1.0) [CMC,l9S4) and BFD(0.7:0.9) [Luo,l9S7a, 
Luo,l9S7h). ThPsP distancP functions ran only bP usPd to dPtPrmine small 
colour diffPrPnces bPcause most arP not symmPtric or do not comply with 
thP triangle inPquality. In thP following paragraphs WP will also rPfPr to 
thPsP distancP lllPasurPs as "uniform colour spacPs''. To Pvaluate these 
spacPs, it was nPcessary to adapt somP of thPlll. All thP modifications and 
paramPtPrs ran bP found in [Mahy,1994a. Mahy,l994b]. 

Uniformity of colour span•s 

TherP arP quitP a lot of uniform colour spaces which are optimizPd to 

predict certain PXpPrimPntal data, but thPre is no guaranteP that such a 
space is also abiP to approximate othPr expPrimental data. To know which 
uniform colour space should bP usPd for a spPcific application. we Pvaluated 
t!JPm by comparing thPir uniformity for small and largPr colour diffPrPnces. 
TherPforP WP madP usP of two kinds of PXpP.rinJPntal data, i.P. colour dis­
crimination data to invPstigate the uniformity for colour diffPrencPs of about 
a .JND and appParancP systems for largPr diffPrPncPs [Wyszecki,19X:L]. 

BasPd on this study we could divide uniform colour spaces into two 
difff'rent dassps, a class to calculatf' small colour difff'rPnces and anothf'r 
onf' for larger distances [Mahy, 1994a). The distance functions arP typical 
PXamples of the first class whereas most other sparPs such as CIELAB, 

CIELUV and Labhnu belong to the second class. 
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The main difference between both classes is reflected in a different scale 
factor between the distance unit along the lightness component and the 
unit in the chroma plane. These factors can be found in column 'Aver. 
Wt' of table III in [Mahy,1994a]. CIELAB for example is quite uniform for 
larger distances (about 10 .JND), but to make it uniform for small distances 
the unit of the lightness axes should be enlarged with a factor 2.4. 

Visual determination of .JND's 

To check if uniform colour spaces could be made more uniform for small 
colour differences by rescaling the lightness axis compared to the chroma 
unit, we determined the size of a .JND along the three main axes of the 
uniform colour spaces. Therefore images consisting of consecutive rectan­
gles, of which the colour only differed with a given step, were evaluated. 
The colour distance for which pseudo contours just become visible corre­
sponds to the visual determined .IND. This was done for colours along the 
lightness axis and the opponent colour axes. To avoid problems with quan­
tization errors, the minimum lightness of all colours was 50 CIELAB units 
[Mahy,1994b]. 

The visually determined .JND values along the different axes are given 
in table 1. Column 'lightness' corresponds to the .JND's along the lightness 
axis, whereas the columns 'red-green' and 'yellow-blue' contain the values 
of the chroma components. For the ATD space, the values are 100 times 
enlarged. In case of the distance functions, the .JND's are determined along 
the main axes of CIELAB. 

For most spaces the lightness axis is quite uniform, but the .JND's along 
the chroma axes are chroma dependent. The chroma axes for all the colour 
models except CM C( 0. 7: 1.0) and BFD(O. 7:0.9) are most sensitive at the ori­
gin (grey value). For the distance functions CMC(0.7:l.O)and BFD(0.7:0.9) 
however, the chroma axes are most sensitive for the most saturated colours. 
In table 1 only the minimum .JND values are given. 

If the ratio of the .JND in the chroma plane to the .JND along the 
lightness axis is compared to the scale factors of table III in [Mahy,l994a] 
(column 'Aver. Wt '), we see that they are much too large. A profound inves­
tiJ.?;ation indicated that this was due to the crispening effect [Mahy, 1994b], a 
visual effect by which small colour differences are increased [Wyszecki,19H2]. 
This effect only occurs for the luminance channel which multiplies small dif­
ferences with a factor of± :3.5. 

Both the visual evaluations of .JND's and discrimination data indicated 
that most spaces can be made morE> uniform by making use of a chroma 
dependent scalE> factor. In this way, CIELAB becomes about as uniform as 
thE> best distance function. This adapted distance function, the Colour Dif-
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Colour space lightness red-green yellow-blue 
Hunlab 0.4 ± 0.1 1.50 ± 0.25 1.50 ± 0.25 
CIELAB 0.4 ± 0.1 1.75 ± 0.25 1.50 ± 0.25 
CIELUV 0.4 ± 0.1 2.75 ± 0.25 2.75 ± 0.25 
ATD (X 100) 1.4 ± 0.4 2.0 ± 0.5 2.5 ± 0.5 
Labhnu 0.4 ± 0.1 2.5 ± 0.25 2.0 ± 0.25 
Frei 0.3 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 
SVF 0.12 ± 0.04 0.40 ± 0.05 0.30 ± 0.05 
Hunt 0.4 ± 0.1 1.25 ± 0.25 1.25 ± 0.25 
Nayatani 0.4 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 
OSA 74 0.12 ± 0.02 0.:10 ± 0.05 0.25 ± 0.05 
OSA 90 0.12 ± 0.02 0.30 ± 0.05 0.25 ± 0.05 
FMC1 1.4 ± 0.2 :3.0 ± 0.5 2.5 ± 0.5 
FMC2 1.0 ± 0.2 4.0 ± 0.5 :l.5 ± 0.5 
CMC(0.7:1.0) 0.4 ± 0.1 1.50 ± 0.25 1.25 ± 0.25 
BFD(0.7:0.9) 0.4 ± 0.1 1.75 ± 0.25 1.75 ± 0.25 

Table 1: Visually determined .J ND values for the lightness component 
and the chroma axes ( rPd-green and yellow-blue) for the dif­
ferent colour spacPs. The valuPs arP given in the units of the 
corresponding colour space. 

ference Formula (CDF) [Mahy,1994a], betwPPn two colours with CIELAB 
coordinates ( L~, a~, b;) and ( L:i, a:i, b::i)is given by 

with 

L· 
' 

a; 

b 
' 

iE{1,2} 

L* 
' o, 7 - o, oo:~ x c 

a~ 

' 1, 0 + 0, 004 X C 
bi 

1, 0 + 0, 004 X C 

C the average CIELAB chroma value of both colours 
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Quantization errors 

Colours are normally represented in tristimulus spaces. If 8 bits are used 
per component, the error on tristimulus values is ± 1/2 on a scale of 255. 
However, due to the non linear transformation to uniform colour models 
or the colour distance function the quantization error can increase signifi­
cantly. We determined these errors for the transformation from CIERGB 
with R bits per component to different uniform colour models (Mahy,1994b]. 
The results are given in table 2. In the column 'maxima' the maximum 
quantization errors are given for the components cl' c2 and c3, and in 
column 'CIERGB' the CIERGB values are given for which the quantiza­
tion error reaches the maximum. In column 'averages' the average quanti­
zation error over all the colours are given for the three components. The 
first component C1 is the achromatic channel and the second C2 and third 
Ca component are the red-green and yellow-blue channel respectively. In 
case of the distance functions FMC1 and FMC2, resp. CMC(0.7:1.0) and 
BFD(0.7:0.9) these are the components of XYZ resp. CIELAB. The units 
are each time the units of the corresponding colour space. Only for the 
ATD space the values are 100 times enlarged. 

If the quantization errors in table 2 are compared with table 1 (the 
visually determined .JND's), the quantization errors are quite large for most 
spaces. For some spaces there are singularities. For example, ATD and the 
space of Frei are singular for black and the OSA spaces are singular for the 
OSA variable Y10 = 0.2H7. As a result the calculations for table 2 started 
from the CIERGB value (1,1,1) instead of (0,0,0) and no data is given for 
the OSA spaces. Other spaces such as Seim and Val berg, FMC 1, FM C2 and 
the model of Nayatani are highly unstable. These effects will drastically 
influence the usability of these colour spaces to predict colour differences. 
As a result we will choose a space for which the quantization effects are less 
apparent such as CIELAB, CIELUV and the model of Hunt. Nevertheless 
R bits per component are not enough to quantize colours uniformly in a 
tristimulus space. 

If the average quantization errors are compared with the visually de­
termined .JND's, the quantization errors are always smaller. This indicates 
that the quantization errors are only too large in a small part of the colour 
spaces. Calculations indicated that the largest errors occur for dark colours, 
and dec.rease if the colours become lighter. As a result, the quantization 
errors can be reduc:ed considerably if the colour values are quantized after 
a non linear transformation. An interesting class of non linear transforma­
tions is given by 

I (!__) 1/i 
8 = ._<;n 

._'in 
(2) 
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maxima averages 
C\ Cz C:l CIERGB Ct Cz C:l 

Hnnlab 1.6 19.6 40.5 (1,1,175) 0.2 0.6 0.6 
CIELAB 1.8 7.7 6.0 ( 1,1, 1) 0.2 0.6 0.6 
CIELUV 1.8 4.6 8.8 (1,1,118) 0.2 0.6 0.6 
ATD (X100) 0.5 0.5 0.5 ( 1,1, 1) 0.5 0.4 0.6 
Labhnu 1.8 18.8 12.2 ( 1,1, 1) 0.2 0.9 0.6 
Frei 11.9 20.5 14.1 ( 1,1, 1) 0.1 0.2 0.2 
SVF 9.9 99.6 4:l.8 ( 1,1' 10) 0.1 0.2 0.1 
Hunt 0.9 :l.9 2.8 ( 1,1, 1) 0.2 0.8 0.6 
Nayatani 2.6 12.6 8.0 ( 1 '1, 1) 0.2 0.5 0.4 
FMC1 110.2 102.0 :H.2 ( 1,1, 1) 1.0 1.1 0.:3 
FMC2 6:l.4 5:l.5 18.0 (1 ,1, 1) 1.5 1.4 0.5 
CMC(0.7:1.0) 5.0 12.0 9.4 ( 1 '1' 1) 0.2 o.a 0.3 
BFD(0.7:0.9) 3.5 16.3 12.7 ( 1,1, 1) 0.2 0.4 0.4 

Table 2: Maximum and average quantization errors for the different 
components of the colour spaces if the colours are given in 
CIERGB with 8 bits per component. 

with 8 a tristimulus value and 8,. thP maximum value of 8. Such a function 
is used 

• in the transformation from XYZ to CIELAB, with i equal to 1 or a, 
depending on thP value of 

5

5
., 

• if the colour values are transformPd to be displayed. This transforma­
tion, that is called the gamma correction, gives the relation between 
the voltage sent to the display and the light output [Hunt,1988]. Typ­
ically 'Y is about 2.2. 

The quantization errors for gamma corrected CIERGB values are given 
in table a. We immediately see that the maximum quantization errors are 
reduced considerably for most spaces. For CIELAB, CIELUV and ATD for 
example the maximum errors are even lower than the visually determined 
.JND's. As a result 8 bits per component for gamma corrected RGB values 
are sufficient to encode colours uniformly. 

Correlation between colour differences 

To compare colour spaces with each other, linear regression analysis was 
applied to colour differences. This relation is given by 
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maxima averages 
(\ c2 c3 CIERGB c1 c2 c3 

Hunlab 0.2 2.9 5.9 ( 2:J, 26,255) 0.2 0.7 0.8 
CIELAB 0.3 1.4 1.0 ( 21, :Jo, 47) 0.2 0.7 0.6 
CIELUV o.a 1.4 1.2 (194, 86, 96) 0.2 0.8 0.7 
ATD 1.1 1.0 1.1 ( 1' 1, 1) 1.3 1.2 2.2 
Labhnu o.:J 4.9 2.9 ( 1' 1' 2) 0.2 1.0 0.7 
Frei 3.6 6.2 4.0 ( 8 

. ' 7, 9) 0.2 0.3 o.:1 
SVF 4.0 43.1 :J1.3 ( 31, 4,1:J2) 0.4 0.2 0.1 
Hunt 0.3 1.4 1.1 (204,209,213) 0.2 0.8 0.6 
Nayatani 0.3 1.7 1.2 ( a:J, :~a, :H) 0.2 0.5 0.4 
FMC1 261.2 225.8 122.1 ( 1' 1' 2) 1.7 1.5 0.6 
FMC2 145.2 114.:J 67.9 ( 1' 1' 2) 1.9 1.6 0.6 
CMC(0.7:1.0) 0.8 2.1 1.6 ( ao, 30, :Jo) 0.3 o.:J 0.3 
BFD(0.7:0.9) 0.5 2.7 2.1 ( ao, ao, :Jo) 0.3 0.4 0.4 

Table 3: Maximum and average quantization errors for the different 
components of the colour spaces if the colours are gamma 
corrected CIERGB values with 8 bits per component. 

with !::l.E1 the distance according to the first space, 
!::l.E2 the distance according to the second space, 
a the inclination of the linear regression line. 

The inclination a is obtained by minimizing the MSE which is given by 

(4) 

with i the summation over all colour pairs and n the number of colours. 
As indicated in section 'Uniformity of colour spaces', different colour 

spaces should be used to determine small and larger colour differences. 
Therefore we determined the linear regression line for small and larger 
colour distances. For larger distances differences between surface colours, 
corresponding to illuminant E, were calculated which lie on a grid in CIELAB 
with a sample distance of 6 CIELAB units. To avoid effects due to quanti­
zation errors, the lightness of all colours is larger than 10. For small colour 
differences all colour differences between colours on a grid of 5 X 5 X 5 
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Colour spaces cor. a Colour spaces cor. a 
H unlab-CIELAB 0.60 0.88 ATD-Frei 0.50 45.42 
Hnnlab-CIELUV 0.70 1.:36 ATD-SVF 0.60 15.94 
Hunlab-ATD 0.47 O.Dl ATD-Hunt 0.47 95.00 
H unlab- Labhnu 0.68 1.18 ATD-Nayat. 0.47 77.61 
H nnlab- Frei 0.19 0.44 ATD-OSA74 0.5:3 15.02 
Hunlab-SVF 0.87 0.20 ATD-OSA90 0.50 16.:34 
H unlab- Hunt 0.86 1.22 ATD-FMC1 0.67 19a.oa 
Hunlab-Nayat. 0.80 0.92 ATD-FMC2 0.52 162.18 
Hunlab-OSA 74 0.87 0.18 ATD-CMC 0.77 39.10 
Hunlab-OSA90 0.8:3 0.19 ATD-BFD 0.67 47.12 
Hunlab-FMC1 0.70 2.76 Labhnu- Frei 0.42 0.41 
Hunlab-FMC2 0.77 2.15 Labhnu-SVF 0.74 0.17 
Hunlab-CMC 0.44 0.49 Labhnu-Hunt 0.8:3 1.04 
Hunlab-BFD 0.:35 0.58 Labhnu-Nayat. 0.52 0.76 
CIELAB-CIEL UV 0.86 1.49 Labhnu-OSA 7 4 0.71 0.15 
CIELAB-ATD 0.65 0.02 Labhnu-OSA90 0.67 0.16 
CIELAB-Labhnu 0.96 1.29 Labhnu-FMC1 0.55 2.46 
CIELAB-Frei 0.46 0.55 Labhnu-FMC2 0.68 1.86 
CIELAB-SVF 0.69 0.22 Labhnu-CMC 0.80 0.46 
CIELAB-Hunt 0.77 1.37 Labhnu-BFD 0.74 0.5:3 
CIELAB-Nayat. 0.45 1.04 Frei-SVF o.:n o.:n 
CIELAB-OSA74 o.6a 0.19 Frei-Hunt 0.14 2.8:3 
CIELAB-OSA90 0.59 0.20 Frei-Nayat. 0.:32 2.0:3 
CIELAB-FMCl 0.46 :U4 Frei-OSA74 0.27 0.27 
CIELAB-FMC2 0.58 2.49 Frei-OSA90 0.28 0.29 
CIELAB-CMC 0.79 0.60 Frei-FMC1 0.43 5.95 
CIELAB-BFD 0.72 0.70 Frei-FMC2 0.25 5.04 
CIELUV-ATD 0.64 0.01 Frei-CMC 0.54 0.99 
CIELUV-Labhnu 0.92 0.87 Frei-BFD 0.40 1.21 
CIELUV-Frei 0.28 0.34 SVF-Hunt 0.80 6.02 
CIELUV-SVF 0.69 0.15 SVF-Nayat. 0.83 4.70 
CIELUV-Hunt 0.85 0.91 SVF-OSA74 0.85 0.91 
CIELUV-Nayat. 0.4:3 0.64 SVF-OSA90 0.84 0.97 
CIELUV-OSA74 0.74 0.13 SVF-FMC1 0.81 12.98 
CIELUV-OSA90 0.70 0.14 SVF-FMC2 0.82 10.27 
CIELUV-FMC1 0.43 2.18 SVF-CMC 0.58 2.81 
CIELUV-FMC2 0.61 1.62 SVF-BFD 0.47 :3.40 
CIELUV-CMC 0.69 0.39 Hunt-Nayat. 0.63 0.7:3 
CIELUV-BFD 0.64 0.46 Hunt-OSA74 0.83 0.15 
ATD-Labhnn 0.71 84.51 Hunt-OSA90 0.79 0.16 
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Colour spaces cor. a Colour spaces cor. a 

I 
Hunt-FMC2 0.72 1.77 OSA74-CMC 0.50 3.18 
Hunt-FMCl 0.51 2.37 0SA74-BFD 0.39 3.88 
Hunt-CMC 0.52 0.42 OSA90-FMC1 0.67 14.14 
Hunt-BFD 0.48 0.49 OSA90-FMC2 0.66 11.23 
Nayat.-OSA 74 0.82 0.19 OSA90-CMC 0.48 3.01 
N ayat.-OSA90 0.77 0.20 OSA90-BFD 0.35 3.71 
Nayat.-FMC1 0.88 2.81 FMC1-FMC2 0.85 0.81 
Nayat.-FMC2 0.81 2.34 FMC1-CMC 0.58 0.18 
Nayat.-CMC 0.43 0 .. 52 FMC1-BFD 0.47 0.21 
Nayat.-BFD 0.32 0.62 FMC2-CMC 0.55 0.24 
OSA 7 4-0SA90 0.98 1.07 FMC2-BFD 0.54 0.28 
OSA74-FMC1 0.70 14.83 CMC-BFD 0.89 1.26 
OSA74-FMC2 0.73 11.66 

Table 4: Correlations between colour spaces for small colour differ­
ences. 

points were taken into account with a sample distance of 0.5 CIELAB units 
along the L*-axis and 1 CIELAB unit in the chroma plane. The central 
colour of the grid was shifted in CIELAB in the gamut of surface colours 
corresponding to illuminant E with 5 CIELAB units along the lightness 
axis and 16 units in the chroma plane. To determine small colour differ­
ences, the unit of the lightness axis was corrected properly compared to the 
unit in the chroma plane. For the calculations 4. 731.4 77 colour pairs were 
calculated for larger differences and 4.072.234 pairs for small differences. 

The correlation (see column 'cor.') and inclination (see column 'a') 
for small colour differences are given in table 4. Results for larger colour 
differences (for the results see [Mahy,1994b]) are quite similar. Distances 
determined in the first resp. second space of column 'Colour spaces' corre­
spond to the x resp. y axis. 

Based on the correlation, it is possible to check which colour spaces 
give rise to similar colour differences apart from a global scale factor. Im­
age processing techniques which are based on similar spaces will result in 
identical results. From tables 4 we can conclude that 

• CIELAB, CIELUV and Labhnu are quite similar, 

• OSA 7 4 and OSA 90 are highly correlated 

• the space of Frei and ATD do not correlate with other spaces, 

• FMCl and FMC2 give rise to similar differences, 
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• CMC(0.7:1.0) and BFD(0.7:0.9) do not differ significantly 

The inclination a on the other hand gives the relation between the 
units of the spaces. For example, one CIELAB unit corresponds to about 
1.5 CIELUV units. 

Colour image processing 

In this section grey image processing operations will be adapted to ma­
nipulate colour images in agreement with the HVS. In general this adapta­
tion is not difficult, however it doesn't often happen in practise. 

Overview of colour image processing operations 

In literature, different colour spaces are used to manipulate colour im­
ages. For some applications such as edge detection, segmentation and en­
hancement these are tristimulus or gamma corrected tristimulus values. As 
a result a visual evaluation of the processed images has no sense. 

To sharpen edges, Faugeras proposes to process only the luminance com­
ponent [Faugeras,l979]. Because the Contrast Sensitivity Function (CSF) 
of the achromatic channel is significantly more sensitive than the CSF of the 
chromatic channels, pure colour edges are less important than luminance 
edges. Also for edge detection several researchers indicate that luminance 
edges are more important than colour edges. As a result colour spaces 
are used with a luminance-like component and two chromatic components. 
These chromatic components are not always well chosen. Nevatia for exam­
ple took rg-chromaticity coordinates [Nevatia,l977], but chromaticity co­
ordinates are singular at black [Kender, 1976] and they do not correspond 
to visual colour differences. Robinson has evaluated several colour spaces 
for visual edge detection [Robinson,l977]. A colour edge was defined as the 
maximum of the gradient of the three components. He found that good 
results are obtained with colour spaces with a luminance-like component. 

Otha studied colour spaces for image segmentation [Otha,l980]. Based 
on a histogram the images were divided in two regions by choosing a proper 
threshold. On each image part this technique was repeated until no further 
segmentation was possible. Otha did not detect significant differences by 
making use of several colour spaces, so he proposed to use the simplest 
one. Tominaga on the other hand segmented the image based on its princi­
pal components [Tominaga,l992]. CIELAB was used, but he reported that 
similar results are obtained with other colour spaces. 
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The use of colour spaces 

In most cases, image processing techniques can be split up into local 
averaging operations and colour differences. According to the characteris­
tics of the HVS these operations should be performed in different spaces 
[Mahy,l990]. 

• A local averaging has to be performed in a tristimulus space. The 
choice of the tristimulus space is not important because they are all 
related to each other by a linear transformation. 

• Colour differences on the other hand should be determined in a uni­
form space. The choice depends on the size of the colour differences 
that are to be predicted. For differences of about a JND, a colour 
difference formula could be used (e.g. CDF), whereas for larger dis· 
tances CIELAB should be a good choice. 

Quantization errors 

By using uniform colour spaces, often artifacts are introduced due to 
quantization errors. These errors are a result of a bad colour quantization, 
mainly for dark colours. To avoid this effect, colours can be transformed 
out of the dark region as follows [Mahy,199l] 

( 

R'- R;u ) 
G:- G;u 
B - B;u (T 0 

l- k 
0 

with (R,G, B) the original RGB values 
(R' ,G' ,B') the rescaled RGB values 
(R;u, G;u, B;u) the RGB values of the illuminant 
k a scale factor with 0 ~ k ~ l 

R- Rill ) 
G- G;u 
B- B;u 

(5) 

In this way grey values are transformed to grey values, the black point is 
shifted to (kR;u, kG;u, kB;u) and the white point remains the same. This 
transformation preserves the hue, but decreases chroma and increases lu­
minance. This is no problem because we are mainly interested in colour 
differences and not .in colour appearance. On the other hand darker colours 
exhibit the largest errors, but the accuracy of these colours is the worst. 
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Processing the colour components 

In contrast to grey images, colour images consist of three components. 
How to process these components correctly depends on the operation. 

In the HVS there are two main zones of colour coding, i.e. a RGB and 
an opponent colour coding. These colour channels have several features. If 
we want to process a particular visual characteristic that is different for the 
three channels/components, the images should be processed component per 
component in a proper colour space. If howPvPr the procpssed characteris­
tic is thP same for thP thrPe channels, the components should he processed 
together. 

Convolutions : An PxampiP of an opPration for which the processed fpa­
turPs are the same for the three componPnts arP convolutions. Becausp 
convolutions can bP seeu as an additive mixture of colours, they should bP 
performed in an additivP spacP. The convolution mask per pixel should 
bp the samP for the threP components, so the operation can be performed 
component per component. If the masks were diffPrent for thP threP com­
ponents, thP processing would not be invariant for thP choicP of the tristim­
ulus space. Therefore WI' make a distinction bPtWPPn thP following typPs of 
convolution masks. 

• If the mask is independent of the image content, the convolution can 
be performed component pPr component in any tristiumlus spacP. 
Typical examples are noise reduction OJWrations by means of averag­
ing, rotations and image rPsizings [Mastin,1985, Pratt,l991]. 

• If the convolution mask is image dependPnt such as the gradient in­
versP filter [Wang,l981], the sigma filter [Mastin,1985] and the edge 
preserving filter [Nagao,l979], thP three components should be taken 
together to dPtermine the mask values. If these operations were per­
formed componPnt per component, mainly pixels along edges will have 
strong deviating colours. In the edge preserving filter this is the result 
of averaging the colours at one side of the edgP for one component 
whereas the new value for another component is the average of the 
colours at the other edge side. If the colours at both sides of the edge 
are quite different the nPW colour will in general deviate significantly. 

Edge detection : Colour edge detection is one of the operations which often 
poses problems [Delcroix,l988, Nevatia,1977, Pratt,1991, Robinson,1977, 
Shiozaki,l986, Tominaga,1987, Trahanias,1993]. If we assume that edges 
should be characterized by their size and direction, the gradient is a good 
candidate. ThP only problem we have is to generalizP the concept of the 
gradient for grey images. 
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Mathematically, colour images can be written as 

with ( x1 , x2 ) the coordinates of the pixels in the image 
p(x1, xz) = (C\(x1,x2), Cz(xi, xz), C3(x1, xz)) 
(C\(xl,xz),Cz(xl,xz),C.'3(x1,xz)) three colour components 

An infinitesimal change ofF is given by 

dF 

with 

= (1 O aC1(xhx2) aCz(x1,x2) aC3(X11X2)) 
' ' OX} ' OX} ' OX} 

If JR 5 is Euclidean, the length of vector dF can be written as 

dF.dF 

with 

( d d ) ( fn /12 ) ( dx1 ) 
X} Xz f21 /22 dx2 

aF aF 
OXj. OXj 

(7) 

(R) 

(9) 

( 1 0) 

( 11) 

If ( dx1, dx 2 ) = dr( cos 6, sin 6), then the direction of the gradient corresponds 
to the angle 6 for which L2 is maximum with 

( cos 9 sin 9 ) ( 9II 912 ) ( c?s 
6 ) 

921 922 Sill 6 
( 12) 

and 

9ij = 
OpOp 
ax; ·axj 

( };J) 
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L 2 is extreme if 

(} = ! arctan ( 
2
g12 

) 
2 gl1 - g22 

(14) 

If(} is a solution for this equation, then this also true for(}± 1r. One solution 
corresponds to thl' minimum for L2 , the other with the maximum. 

The gradient is well defined because by means of a rotation in JR: 2 L can 
be made maximal for a change along a new x~ -axis. So 

L=.P:: = 

If ( C\ ( x 1 , x2 ), C2(x 1 , x2 ), C.1( x 1 , x2 )) are the components of a Euclidean uni­
form space, L corresponds to the colour difference between the colours at 
both sides of the edge. So the three components should be processed to­
gether for edge detection. It is also easy to show that this definition is in 
agreement with the classical gradient for grey images. 

Unsharp masking : For some operations it is possible to process only one 
component. If the characteristic to be adapted is only present in one com­
ponent, only this component has to be manipulated. 

Because the CSF of the luminance channel is significantly more sensi­
tive than the opponent colour channels and most edges are at least partially 
due to luminance differences [De Valois,1988), unsharp masking on the lu­
minance component (or any related magnitude) gives good visual results. 

In natural images there arl' quite a lot of intensity changes duP to shad­
ows. Also the Karhunen-Loeve transformation [Rosenfield,l976) indicates 
that a luminance-like component is the most important one [Otha,1980). 
This does not mean that every space that contains a luminance component 
is an adequate space. If XYZ is used, the X and Z components will remain 
the same, but the Y-value along edges will increasE> or decrease. If the 
colours are transformed back to RGB, mainly the green component will be 
changed. If the luminance value at one side of the edgE> decreases, the green 
component will also diminish, so the colours will look redder and/or bluer. 
As a result, a neutral edge will become red/blue at one side and greener at 
the other side (this can be shown analogously). If the CSF of the chromatic 
channels are really negligible, the operation should be performed in a space 
that models a luminance-like channel and two opponent colour channels. 
In this way the hue and chroma of the colours are kept the same, that is not 
the case if X and Z remain unchanged. In some cases unsharp masking is 
only applied on the green component of RGB. This gives only good results 
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if the rg-chromaticity coordinates are kept the same. 

Weighting factors 

In colour image processing, the contribution of the opponent channels 
to the distance function has to be suppressed related to the lightness dif­
ference [Lang,1988, Mahy,1994a]. To determine these weighting factors, 
we have quantized several colour images in uniform colour spaces. This 
has been done separately for the three components of the uniform spaces. 
The quantization step for which just no pseudo contours or local colour 
clusters are apparent corresponds to the Visual Permissible Quantization 
step (VPQ). Mainly smooth colour shadings influenced the determination 
of VPQ's. 

Based on these values, 1 CIELAB unit along the lightness axis corre­
sponds to :J CIELAB units in the chroma plane. This indicates that the 
chroma components could be reduced with a factor three compared to the 
lightness axis. This explains the choice of the weighting factors in the 
distance function of CIELAB and CIELUV in [Mahy,1991]. 

If the VPQ's are compared with the scale factors W1 in table III of 
[Mahy,1994a] to make spaces more uniform, we see that these values are 
in agreement with each other. Because mainly colour clusters and pseudo· 
contours have been evaluated, the VPQ's are valid for small colour differ­
ences. So the comparison of these values with table III in [Mahy,1994a] is 
justified. 

The weighting factors have also been determined for edge detection. 
For CIELAB, we found that the chroma scales should be suppressed with 
a factor 5 compared with the lightness scale. To determine these values, 
we tried to find as many visual edges as possible with a minimum of noise 
edges. This value is larger than these based on the VPQ's because 

• the quantization errors of the chroma components are considerably 
larger than those of the lightness component. To reduce noise edges, 
the weighting factors of the chroma components have to be large 
enough. Because these values are influenced by quantization errors, 
the weighting factors will differ from image to image. Images with 
small RG B values will be have significantly larger reduction factors 
for the chroma components because the quantization errors for these 
colours are the largest. 

• due to the difference in the CSF of the opponent colour channels 
and the luminance channel, the contribution of the chroma axes will 
be reduced. This is logical because small but relatively clear edges 
in the chroma components will be less visible than the same edge 
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(equal colour difference of the colours at both sides of the edge) in 
the lightness component. If chroma edges are detected in the same 
way as lightness edges, sometimes edges will be detected that are not 
visible. As a result the chroma components will be reduced due to 
the CSF. 

The weighting factors are determined by non uniformities of the colour 
space, unmodelled visual effects and quantization errors. To choose the 
weighting factors optimally, they should be influenced by as few effects as 
possible. These factors will be less dependent for a certain image set and 
as a result will be more generally valid. This can be obtained by a good 
quantization of the RGB values (e.g. gamma corrected RGB values) and 
by picking up non modelled visual effects in the processing. As a result 
the weighting factors will only be needed to correct non uniformities of the 
colour space. 

Conclusions 

In this paper we evaluated uniform colour spaces developed after the 
adoption of CIELAB and CIELUV. Based on visual data they could be 
divided into two classes, one to predict small colour differences and another 
one to calculate larger differences. The main difference between spaces out 
of each class is that the lightness unit has to be resized compared to the 
chroma unit. Visual evaluations of the size of a JND along different axis 
indicated that this correction factor is chroma dependent. Based on these 
evaluations and discrimination data we were able to correct CIELAB, a 
quite uniform space for larger differences, such that it is as uniform as the 
best space for small colour differences. 

Most spaces of the same class are not significantly different. Correla­
tions between colour differences obtained in different spaces indicated that 
some are quite similar. Spaces between which almost no differences are 
found are OSA 78 and OSA 90, and CMC(0.7:1.0) and BFD(0.7:0.9). Also 
CIELAB, CIELUV and Labhnu have quite high correlation factors. This 
means that if these spaces are used in image processing, it will be quite 
difficult to see significant differences between them. 

For image processing purposes it is also important that the models are 
mathematically stable. Calculation of quantization errors indicated that 
some spaces, such as ATD and the space of Frei are singular for some 
colours. The OSA spaces on the other hand are singular for colours with 
Y10 = 0.287. Other spaces such as the space of Seim and Valberg, FMCI, 
FMC2 and the model of Nayatani are unstable. 

As a result we will use different spaces to predict small and larger colour 
differences. A preferred space has no singularities, is stable and is mathe-
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matically as simple as possible. Good candidates are CDF, our correction 
of CIELAB, for smaller differences and CIELAB for larger colour distances. 

To adapt image processing techniques for colour images, the correct 
kind of colour space has to be used for the different subtasks. If this is a 
smoothing operation, a tristimulus space should be chosen. To determine 
colour differences, uniform spaces should be taken. 

The choice of the tristimulus spaces is not important because they are 
all related to each other by a linear transformation. To determine colour 
differences, different spaces have to be used for small and larger differences. 
However, almost no difference is seen in the processed images if spaces out 
of both classes are used. 

This is normal for the determination of local parameter-.~ because in most 
cases colours in a small neighbourhood do not differ that much, so colour 
differences according different colour spaces are equal except for a rescaling 
factor. If however the colours are quite different, we are in most cases only 
interested in segmenting the neighbourhood into two regions. Also in this 
case most spaces will end up with the same result, because colours which 
are quite different in one space will also be different in other spaces. 

The influence of the colour space on the determination of global par·am­
eter·s, such as the threshold for edge detection, is quite significant. This 
is due to the fact that the parameters are the sanH' for the entire colour 
space. The threshold for edge detection for example has to correspond to 
the colour difference that just can be seen. If in this case tristimulus spaces 
are used, the result will be significantly worse than if a good uniform space 
is employed. 

Nevertheless even for the determination of global parameters almost no 
difference is seen in processed images if several uniform spaces are used. 
This is due to the fact that the differences are masked by 

• non uniformities of uniform colour spaces 

• unmodelled visual effects such as induction effects, CSF, crispening 
effect, Hehnholtz-Kolraus effect, ... 

• quantization errors 

Nevertheless if tristimulus and uniform spaces are used correctly, and 
different uniform spaces are used to calculate small and larger colour dif­
ferences, the detern~ination of processing parameters, and as a consequence 
the processing itself will be valid for a larger set of images. The choice of 
the tristimulus space is not important, but as uniform space we opt for a 
space 

• without singularities 
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• with small quantization errors 

• that is mathematically simple 

• that is as uniform as possible 

For larger colour differences CIELAB is a good choice, whereas CDF is 
an adequate space to determine small colour differences. 
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