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Abstract: Device independent color output requires at least two basic 
characteristics be known for each system component to produce color render­
ing that is both accurate and pleasing: (1) relationship between CIE color 
and the device signals required to produce an in-gamut rendering of that 
color, and (2) description of the maximum color gamut of the device. 
Color management programs use these (and other) characteristics to optimize 
output quality. This paper addresses output gamut determination and 
describes color space sampling, numerical techniques for summarizing and 
organizing the sampled gamut and programs for visualizing color gamuts. 

Introduction 

The accurate description of color gamut is a necessary component for the 
simulation of graphic arts printing and proofing devices, and the optimization 
of color output for display. Non-optimal handling of gamut capabilities can 
reduce image quality, and mismatches can cause image artifacts and color 
errors. Many techniques for appearance optimization have been proposed, all 
require that color and neutral gamut be known. 

Frequently, color gamuts have been plotted as a projection onto a 
chromaticity diagram as shown in Figure 1. This obscures the real 3-dimen­
sionality of the gamut, and it is only the 3-dimensional description of the 
gamut that is useful. Such a view of the gamuts of Figure 1 is shown in Fig­
ure 2. It is the intention of this paper to present a method of accurately 
determining the gamut surface for color printing systems and illustrate a 
commercially available visualization program for plotting the results. 

Past work (Bell, 1993) has described methods of locating the gamut sur­
face using tetrahedral interpolation. The technique described in this paper 
uses spline interpolation to accomplish the same. 

1William Kress, NewGen Systems Corporation, Fountain Valley, CA. 
Michael Stevens, CaiComp, Inc., Anaheim, CA. 
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Figure 1. Comparison of two color gamuts for different D2T2 colorants 
using x, y chromaticity coordinates. 

' . . . 
,< . . 

.. 
100 

-· 
~ 50 ;;; 

0 

-80 

-60 100 

-40 

-20 

a_star 

Figure 2. Three-dimensional comparison of Figure l's D2T2 gamuts. 
The solid surface shows photographic colorants and the cut surface shows 
SWOP colorants . 
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Figure 3. Another viewpoint of the D2T2 gamut shown in Figure 2_ 
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Figure 4. The gamut of Figures 2 and 3 with the L * values greater than 
60 set to NaN (see Appendix). 
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Figure 5. The gamuts of an ink jet printer (cut surfaces) versus a 
thermal wax printer (solid surface). 

Color gamut visualization tools have been developed (Meyer, 1993); 
because of resource limitations, it was desired that a readily available 
application program be purchased and used. This report illustrates a technique 
for identifying data on the gamut surface, and techniques for plotting the 
data. All Figures shown herein are plotted using Matlab, and the Appendix 
describes the required data formats, the 3-D plotting routines and presents 
ideas for coloration and shading to make the gamut surface more meaningful. 
Figures 3, 4, and 5 illustrate some of Matlab's flexibility in constructing and 
displaying three-dimensional surfaces. 

Gamut Determination 

T here are two main methods for populating a color gamut descripto r. 
One, an empirical approach, requires that many measurements be taken from 
printed patches that are on or inside the gamut surface, and the other, a 
deterministic or theoretical approach, involves the derivation of a model of 
the printing system (e.g., Engeldrum, 1986, Berns, 1993). Both have been 
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tried, and both have advantages and disadvantages. 

Theoretical models require an in-depth understanding of all the effects in­
volved with the printing process. By modeling all the forces at work for a 
given output process, the model can predict the outcome. This type of model 
can produce accurate results with relatively little data acquisition. The 
primary disadvantage of such models, is that a new model must be developed 
for each output process, and the derivation of the construction and parameters 
for the model is time consuming. 

Empirical models do not require any knowledge of the process. They 
depend on many measurements to ensure accuracy. Empirical models can be 
applied to any output process. All gamuts described herein were derived by 
the empirical method . 
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Figure 6. The color gamut of the D2T2 SWOP media shown in previous 
Figures. Only the primary (CMY), secondary (RGB), paper Dmin and 
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black were used to describe the color gamut. 
structed simply by connecting these points. 

Algorithms 

The gamut was con-

There are three types of data that can be encountered with gamut 
descriptors: color space data points, color space data points on the surface of 
the gamut, and color space data points with corresponding device input 
signals. The first two data sets can only provide information about the 
location of the gamut surface, and consequently are only useful when doing 
gamut comparisons. The third data set not only provides enough information 
to approximate the gamut surface, but allows us to generate a transfer 
function that will transform device signals to color space coordinates and the 
inverse. 

Color Space Data Points 

If our initial data set is a series of data points that may or may not be on 
the gamut surface, the task of accurately approximating the gamut surface is 
a difficult one. 

Figure 7. Examples of possible voxelization geometries. 

The simplest technique for dealing with this type of data is voxelization. 
In voxelization the color space is subdivided into discrete voxels (a 
three-dimensional version of a pixel), using a variety of geometries to suit 
the users needs. If a data point falls within a voxel, that voxel is considered 
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solid, otherwise the voxel is considered empty space. This will produce a 
three dimensional solid model of the shape of the gamut. The only drawback 
of this technique is the large number of data points needed to produce accu­
rate results. Large voxels will result in aliasing. Therefore, it is highly 
desirable to use the smallest possible voxel size. There is however a lower 
limit on the size of the voxels. As the size of the voxels approaches the 
spacing between data points, the gamut solid will begin to develop holes. 

The recommended approach to this problem is to find the convex hull for 
the particular set of data points. This approach is appealing for two reasons: 
for every set of data points there exists a unique solution, and there are 
several published works on algorithms that determine convex hulls. 
However, this technique has one major shortcoming; gamut surfaces are often 
concave. Therefore, convex hulls should only be used in the crudest of 
approximations. 

Color Space Data Points On the Gamut Surface 

This data set conveys enough information to approximate concave surfac­
es. Initial attempts to solve this problem revolved around picking a reference 
point 0 inside the gamut surface. Then an infinitesimally small tetrahedron 
(referred to as the seed) was constructed around point 0. As each data point 
was processed additional tetrahedrons were added to the seed to construct a 
surface. This technique worked with limited success, and has three flaws: (1) 
to locate the gamut surface the starting point 0 must be inside the gamut sur­
face, (2) the final result is dependent on the selection of the point 0, and (3) 
the algorithm is not capable of approximating all simple closed surfaces. 

This lead to the development of the algorithm recommended for the 
analysis of this data type. The algorithm is as follows: 

find_convex_hull 
sort_data_points 
while (unused point exist) 

find_shortest_distance 
add_point_to _surl'ace 
move_point_to_used_set 

while ( not fully optimized) 
optirnize_sulface 

find_convex_hull - This is a logical starting point of the algorithm. Rather 
than expand a surface out from a point, this is equivalent to collapsing an 
infinite surface onto the data points. 

sort_data_points - The data points are then sorted into two categories: 
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primary, and secondary. Primary data points are defined as points that are a 
part of the convex hull surface. Secondary points are defined as points en­
closed inside the convex hull. The secondary points are now further 
classified into two groups: used, and unused, and all the secondary points 
start out as unused. 

find_shortest_distance • Search through all the combinations of unused 
points and triangular facets, and determine the shortest distance between the 
two. The distance is defined only if the dot product of an outward pointing 
normal vector and a vector spanning from the data point to the facet is 
positive. The distance is measured from the point to the centroid of the facet 

add_point_to_surface - Generate a tetrahedron from the data point and the 
facet. Add the tetrahedron to the surface, and remove the duplicated facet. 

move_point_to_used_set- Label the point as used. 

optimize_surface - Search through all the adjacent facet combinations. If the 
distance between the two uncommon points is less than the distance between 
the common points. Change the facets such that the uncommon points 
become the common points and vice versa. There is one exception to the 
rule. If the two uncommon points are primary points, and do not change the 
facets regardless of distance. The surface is considered fully optimized when 
the search goes through an entire cycle without changing any facets. (There 
is certainly opportunity for optimization of this part of the algorithm.) 

Color Space Data With Corresponding 3-Color Input Device Signals 

This is the most useful data set out of the three. To construct a full gamut 
descriptor, three things must be done: find the gamut surface, develop a 
function that will transfer us from input device space to color space, and an 
inverse function that will transform from color space back to device space. 
From this point on this function will be represented to as: r (q1,<u,q3), and 
the inverse function Will be referred tO aS r ·I (Sl,S2,S3) 

There are many functions that may be fitted to the data. A Bezier solid 
was chosen for two reasons: control points affect the entire solid and this 
helps to smooth out measurement noise, and there is an abundance of 
material written on the subject of Bezier curves. 

Bezier solids are defined by control points, and since r(q1,q2,Cb) has been 
defined to be a Bezier solid, the set of control points that best fits the data 
must be found. A least squares fit (O'Neil, 1987) will minimize the standard 
deviation of the error between r(ql,q2,%) and the data. While this is a 
relatively simple task to perform, it is computationally demanding, requiring 
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the solution of an NxN matrix, where N is the number of control points in 
the solid. 

Figure 8. An example of how a gamut might map from device space to col­
or space. 

Effects of over-sampling and under-sampling 

Over-sampling occurs when there are more data points than there are 
control points. This will most likely result in a I'(q1,q2,CJ3) that does not 
exactly fit the data points. This is desirable because it reduces noise intro­
duced by measurement errors. Under-sampling occurs when there are less 
data points than there are control points. Under-sampling is a problem 
because there is no longer a unique solution, and a singular matrix will result 
during the least squares fit. To remedy this, the Bezier solid was given an 
extremely small stiffness that will guarantee a unique solution for any rea­
sonable size data sets. 

A gamut surface can be approximated with the use of the function 
r(qi>qz,q3). The easiest way to accomplish this is to tile the gamut surface in 
device space with a large series of triangular facets. The three vertices for 
each facet can then be transformed into color space using the transfer 
function resulting in a tiled gamut surface in color space. 
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If r(q1,cu,%) is well behaved, and there are no local mm1mums or 
maximums, a modified Newtonian convergence algorithm can be used as 
P 1(s1,s2,sJ. The first modification is tO limit the number of iterations. If 
the data point is out of gamut there is no solution, and there will be no 
convergence. The second modification involves checking to see if the 
prediction is out of gamut. If the prediction is out of gamut, scale the 
correction by a factor of one half. 

If the data is rectilinear (sampled at even intervals), a simpler approach 
can be used. A set of local cubic splines can be fitted to the data, instead of 
using a global fit of an arbitrary function. This will significantly reduce the 
number computations needed for fitting the curve to the data. 

N-color gamut descriptor 

This next section will discuss 4-color gamut descriptors, and the 
methodology can be generalized to n-color gamut descriptors. The technique 
is the same as described above, except for a few modifications that are 
required because there is no longer a one-to-one mapping of color space to 
device space. 

First, a Bezier hypersolid is fit to the data points using a least squares 
method. This is a straightforward process, but computationally expensive, 
and generates a transfer function r(q,,q2,q3,q4). It will map from device 
space ( 4-space) to color space (3-space ). 

To find the gamut surface, the gamut surface is first tiled in device space. 
Mathematically, this is a 4-dimensional cube, but most importantly, it is a 
simple closed surface. The device space gamut tiles are then mapped into 
color space. Since we have transformed from 4-dimensional space to 3-
dimensional space our gamut in color space will no longer be a simple closed 
surface. Our tiles may now intersect each other. For exterior views of the 
gamut, any interior tiles will be hidden by the exterior tiles so that no more 
additional work is required. For internal or cut-away views of the gamut, the 
internal tiles need to be removed. By removing the enclosed tiles, the 
complex surface is reduced to a simple surface. 

Since P 1(sl,Sz,S3) may now be multi-valued, P 1(sl,Sz,SJ becomes very 
difficult to model with an algorithm that converges to a single value. 
However, because a multi-valued result is undesirable, it is necessary to 
impose one or more constraints so that P 1(s1,s2,s3) maps one to one. (For a 
CMYK system, this translates into defining K as a function C, M and Y). 
Then the modified Newtonian convergence algorithm is used as described 
above. 
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Figure 9. An ink jet gamut in CIELAB color space cut along planes of 
constant L*. 
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Figure 10. An ink jet gamut in CIELAB color space cut along various 
hue angle planes. 
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Summary 

A technique for locating the color gamut of 3-color printing has been 
presented. There were suggestions about the extension of this technique for 
n-color printing The program, GAMUT, to determine an outermost surface 
when given an array of data points that are on the gamut surface. The pro­
gram has been made to output a variety of formats for Wolfram's 
Mathematica, MathWorks' Matlab and general gamut descriptors for color 
management systems. 

A commercially available graphical analysis tool, Matlab, has been used 
to plot the surface in colors that intuitively help the user in visualizing the 
device color gamut. 
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Appendix 

Using The Math Works Matlab for Gamut Visualization 

The MathWorks Matlab program has been used to draw all the 3-dimensional 
figures shown in this paper. Matlab is easy to use and simple programs have 
been used to format files to be input directly to Matlab. The following 
example illustrates the Matlab file used to print Figure 5. 
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First gamut data is imported. Data is loaded from two sets of ASCII files 
with fixed length lines terminated with carriage returns and spaces separating 
the numbers. The first file contains the a* b* I* gamut data from an ink jet 
print engine and second the gamut data from a thermal wax engine. 

The input data is of the form of three ASCII data files, created with 
extensions a, b, I. Each line of this file specifies the a• b* and L • 
coordinates of 2-dimensional polygons for each of n L* levels at hue 
increments m. 

Each file will contain m+ 1 columns and n rows. For example, if the hue 
increments are 10 degrees, there will be 36 different hue positions and, to 
assure proper tiling of the 3-dimensional solid, the end point will be 
replicated. 

load d:\matlab\gamuts\ink_jeta 
a = ink_jet(:,:); 

load d:\matlab\gamuts\ink_jetb 
b = ink_jet(:,:); 

load d:\matlab\gamuts\ink_jetl 
I = ink_jet(:,:); 

load d:\matlab\gamuts\t2_ wax.a 
aa = t2_wax(:,:); 

load d:\matlab\gamuts\t2_ wax.b 
bb = t2_wax(:,:); 

load d:\matlab\gamuts\t2_ wax .I 
II= t2_wax(:,:); 

Surfaces can be cropped or made invisible by assigning particular matrix ele­
ments in the color array to NaN (Not a Number). First the indices of all ma­
trix elements are found which are between arctan of 0 and 0.10. The L* ele­
ments at these indices are assigned NaN. This increases the visibility of the 
two gamuts and makes comparisons easier. 

index = find (atan2(b,a) > 0.0 & atan2(b,a) < 0.10); 
l(index) = NaN * index; 

index = find (atan2(b,a) > 0.25 & atan2(b,a) < 0.90); 
l(index) = NaN * index; 

and so forth for the first 180 degrees of the a• b* diagram. 

The following defines the gamuts from 180 to 360 degrees 

index = find (atan2(b,a) < 0.0 & atan2(b,a) > -0.70); 
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l(index) = NaN • index; 
index = find (atan2(b,a) < -0.85 & atan2(b,a) > -1.50); 

I (index) = NaN • index; 

The colormap matrix, x, can be constructed to give hues approximating 
CIELAB. The thermal wax gamut is shown as an entire surface. The ink jet 
gamut has been cut into angular strips and the two gamuts are further 
differentiated by different edgecolor specifications. 

The colormap has 72 rows of which only 8 are shown here. The colors 
progress from magenta to red to yellow and so forth back to magenta. 

c = - atan2(b, -a); 
X = (1.00 0.0 0.90; 

1.00 0.0 0.80; 
............... this data continues for blends from magenta to red 

1.00 0.0 0.05; 
1.00 0.0 0.00; 
1.00 0.05 0.00; 

............... this data continues for blends from red to yellow 
1.00 1.0 0.0; 

............... this data continues until magenta 
1.00 0.0 1.00; 
1.00 0.0 0.95]; 

elf 
figure(1) 
hold on 

Hold the figure so that two gamuts are drawn on one plot. 
colonnap (x) 
h=surf(a,b,l,c) 

Set the colors of the edges of the ink jet gamut mesh to be a light gray. 
set(h, 'edgecolor', [.7 .8 .7]) 
xlabel('a_star'), xl=get(gca, 'xlabel ), set(x1, 'FontSize ',[10]) 
ylabel(b_star'), yl=get(gca, 'ylabel), set(y1, 'FontSize',[lO]) 
zlabel(1_star'), z1=get(gca, 'zlabel), set(z1, 'FontSize',[10]) 

j=surf(aa,bb,ll,c) 
Turn the grid on, set the bounds of the a* b* and L * axes and specify the 
viewpoint. 

grid on, axis([-80, 80, -80, 120, 0, 100]) 
view(300, 70) 

Set the colors of the edges of the thermal wax gamut to be dark gray. 
set(j, 'edgecolor', [.25 .25 .25]) 
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xlabel('a_star'), x1=get(gca, 'xlabel), set(x1, 'FontSize',[10]) 
ylabel(b_star'), yl=get(gca, 'ylabel), set(y1, 'FontSize',[lO]) 
zlabel(1_star'), z1 =get(gca, 'zlabel), set(z1, 'FontSize ',[10]) 
hold off 

Draw four lines of titles. 
axes ('vis', 'off', 'units', 'nonnal', 'pos', [0 0 1.0 1.04]) 
title('COLOR GAMUTS) 
axes ('vis', 'off', 'units', 'nonnal', 'pos', [0 0 1.0 1.01]) 
title('Gamuts of ink jet ver.ous thermal wax) 
axes ('vis', 'off', 'units', 'nonnal ', 'pos', [0 0 1.0 .98]) 
title('Gretag SPMSO, DSO, absolute white reference, white backing) 
axes ('vis', 'off', 'units', 'nonnal ', 'pos', [0 0 1.0 .95]) 
title('viewpoint: azimuth=300, elevation=70 (looking at cyan side)) 

figure(2) 
Another figure can be drawn with another viewpoint. 
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