
MEASURING THE IMPACT OF USABLE CONCURRENT FUNCfiONALITY
AND THREADING ON TYPICAL GRAPHIC ARTS COMPUTATIONS

Eddie Jennings*, Ben Haley*, R.D. Holland*, and Tony Tassone*

Keywords: Computation, Graphics, Imaging, Multiprocessing

Abstract: The Windows NTJ'M operating system's support of multithreading and
symmetric multiprocessing enables a new class of highly parallel software technologies.
Software will soon be judged by performance gains achieved through parallelism.
Available techniques for concurrent processing of typical graphic arts computational
problems are presented. A new software technology called Usable Concurrent
Functionality is described for presenting multithreaded applications to a computer user. A
case study is presented showing the performance gains of image and color processing
algorithms on single and multiple CPU computers. A standard benchmark for graphic arts
software measuring operator productivity and throughput is proposed.

Introduction

The computer systems of today and tomorrow are challenging application software
developers to invent new paradigms for presenting applications to the users of their
products. The challenge lies in harnessing the raw horsepower of the computer
architecture and the new features of the operating systems in ways that significantly
increase the productivity of the user and the throughput of the software application (i.e.,
the work accomplished). Another challenge is to produce applications that will
automatically scale in performance and throughput on introduced hardware innovations
without significant re-design of those applications. Technologies such as symmetric
multiprocessing (SMP) and threading are key components of producing such scalable
software architectures.

In the Intel-based PC market, there are currently several dual Pentium based
machines available (typically running Microsoft's Windows NT Workstation operating
system). For servers, there are 2, 4, and 6 CPU (Pentium) machines also readily available
(typically running Microsoft's Windows NT Server operating system). In fact, there is a

* Intergraph Corporation, Digital Imaging Department, Advanced Graphics and
Development Systems Division, Mailstop IW17C4, Huntsville, AL 35894-0001, Email:
rejennin @ingr.com

404

new category of machines known as personal workstations. A personal workstation is
simply described as a computer built from standard PC components (CPU, RAM, disk
controllers, graphics, network) that run standard operating systems and are capable of
delivering the performance of traditional high-end UNIX workstations. Typically, the
subsystems of a personal workstation are highly tuned (via careful system engineering) to
produce workstation level performance. Dual-processor personal workstations are the
most common today. The trend over the next 2 years is to the introduction of a new class
of machine referred to as a personal server. A personal server is described as an
extremely high performance machine capable of providing a dedicated service to the user
(of a demanding application) while still filling the need of a workgroup server to other
users. A typical graphic arts scenario would be an image processing/color correction/page
assembly station running on a personal server that is also performing OPI picture
replacement, printer management, and batch trapping for other users on the workgroup
network. Personal servers will be differentiated from workstations by CPU horsepower
(number of CPUs, clock speeds, etc.), peripheral capacity, and the use of a server-enabled
operating system. The Windows NT scalable family of operating systems (Workstation
and Server) is the logical choice for personal workstation and personal server machines.
Its architecture was designed from the ground up supporting SMP machines and is itself
fully threaded.

Workstations based on SMP technologies have existed under UNIX for several
years. However, they never became mainstream for several reasons (cost, lack of SMP
enabled software applications, and the proprietary nature of workstations). The Open
Software Foundation (OS F) operating system provided an SMP-enabled platform and has
been well documented (Mui and Talbott, 1991).

The Macintosh and Power Mac platform that is so prevalent in the graphic arts is
significantly behind in terms of SMP hardware architectures and operating systems. Norr
(1995) recently reported that although the first Power Mac SMP machines (actually
clones) have been announced for shipment in August 1995, Apple's plans for integrated
SMP support within its operating system will most likely surface in late 1996 to mid-
1997. Some interim solutions will be available from vendors to give applications access to
multiple CPUs. However, these solutions will not be optimal.

Therefore, the fact that Windows NT is available today and was designed
specifically for scalability in terms of SMP computer architectures coupled with the lack
of true SMP support on the mainstream graphic arts platform leads the developers of
serious applications (for which personal workstations and servers are intended) to
Windows NT as the operating system of choice.

Threading Concepts

Concurrency is an attribute of a software design that allows a single application
to execute independently in two or more code locations. Traditional multi-tasking
operating systems allow concurrency between individual processes (i.e., programs).

405

Modern operating systems (such as the Windows NT family) are symmetric
multiprocessing (SMP) and allow individual programs (processes) to be composed of
threads. A thread is a unit of code in a process that can proceed independently of other
threads. In simple terms a process is a task that is requested of the operating system while
a thread is one independent subtask necessary to accomplish the overall task.

In an SMP operating system, a multi-tasking technique is employed when there are
more threads waiting to run than there are CPUs available to run them. Context switching
is used to switch the execution on a processor between the threads that are waiting to run.
A thread's context is defined as a set of volatile registers representing the state of the
processor, the user and kernel mode stacks used by the thread, and a private storage area
(Custer, 1993). Context switching is the process of saving a running thread's context,
loading the context of another thread, and beginning the execution of that thread. The
saved context allows the original thread to return to execution at its next scheduled time
slice.

Writing a multithreaded application is difficult. This is due to the fact that each
thread within a process has access to that process's address space and resources. This can
cause threads to "step on each other," produce random results, and produce hard to track
software errors (such as deadlock). A key concept for providing order within a
multithreaded application is synchroniwtion. This provides the ability for a thread to wait
for another thread to complete an operation before proceeding. Access to global data,
peripherals, and application resources must be synchronized in a multithreaded
application. To illustrate this concept, consider the following example. Thread A reaches
a point where it needs to obtain a free memory buffer from the pool of previously
allocated buffers. It determines that a buffer is available. It then reserves access to that
buffer. To illustrate the potential problems in a multithreaded environment, assume that
thread B also needs a memory buffer. If thread B looks to determine availability of a
buffer after thread A has reserved its buffer, no problems would occur. However (due to
context switching and parallel execution on multiple CPUs) it is possible that thread A
could determine that buffer N is available. Then, thread B could also determine that N is
available. Thread A reserves buffer N. Then, thread B also reserves buffer N. This
represents an obvious serious flaw. The solution to the problem is to synchronize access
to the data structure that controls the pool of memory buffers. In other words, only allow
one thread to access this data structure at a time. This allows the sequence of reading the
data structure (to determine availability of a buffer) and writing the data structure (to
reserve a free buffer) to be indivisible (i.e., can't be interrupted by access from another
thread). Synchronization is accomplished by such constructs as event objects, semaphore
objects, code critical sections, and mutual exclusion.

Since a multithreaded application is difficult to build and most applications consist
of many underlying libraries and services (some of which are not under the control of the
primary application developers), the notion of code thread safety is important. A body of
software is called thread safe if it is known to be able to be used within a multithreaded
environment. In general, software is not thread safe if access to global data and resources

406

is not synchronized. Also, state driven software is generally not thread safe. Since the
concepts of threading are relatively new, most existing software is not thread safe. This
provides great difficulty in building applications for SMP architectures. In order to make
a body of software thread safe, the developers must be concerned with the aspects of
concurrency and Jearn to program "defensively." While this type of programming is well
known to system programmers of operating systems and concurrent transaction based
programs (databases, etc.), it is far from well known in the community of software
application developers. Most developers have never been required to design and code
software to avoid deadlock (as can easily happen in a multithreaded application when two
or more threads need mutually exclusive access to two or more resources). Much
education and retraining is necessary to build expertise so that truly concurrent
applications can be built. Complicating this learning curve is the emergence of component
software technologies (Adler, 1995) and applications composed of components largely
unknown to the clients of the components. This makes the job of determining thread
safety within an application a very difficult task. If components are truly unknown (in
terms of their own thread safety), then localized threading within an application is the best
that can be obtained.

The most common form of threading in use today is referred to as black box
threading. In the black box approach, computationally difficult (i.e., time consuming)
tasks are subdivided (i.e., multithreaded) in order to reduce the time required to execute
those tasks. The typical case is to black box thread algorithms for better performance.
This produces faster execution of tasks within an application but does not fundamentally
alter the basic behavior of those applications. Other forms of threading include user
interface threading and will be discussed in more detail later. Black box threading
represents the most straightforward form of thread implementation and provides the
simplest path to thread safety. In the next section, computational examples of black box
threading applicable to the graphic arts are given.

Computational Concepts and Examples

The computational and threading techniques presented in this paper are applicable to
a wide variety of problems. However, image processing is a discipline well suited to
parallelism and is also very important within the graphic arts. Therefore, the remainder of
this paper will focus on a class of image processing problems to demonstrate the concepts
being conveyed.

Many traditional graphic arts image processing operations are applicable to the
technique of black box threading mentioned above. Examples include unsharp masking,
gradation, selective color correction, color separation, convolution filters, raster-based
trapping, etc. Such algorithms are either pixel neighborhood independent (PNI) or pixel
neighborhood dependent (PND). Examples of PNI operations are gradation, selective
color correction, and color separation. These operations can be executed on a pixel
without knowledge of the values of surrounding pixels. Examples of PND operations are
unsharp masking, convolution filters, and trapping. In order to perform one of these

407

operations on a pixel, the surrounding pixel values must be accessed. In general, PND
algorithms are more difficult to thread than PNI algorithms. In the following example, a
convolution filter (PND algorithm) is demonstrated in terms of a possible threaded
implementation. This implementation is provided for illustration purposes only and is not
implied to be an optimal approach.

Recall that a convolution filter (Gonzalez and Wintz, 1987) is implemented digitally
on an image in terms of a convolution matrix, M, of radius R (where R is typically 1, 2, or
3). Such a matrix is of dimensions (2R+ l) x (2R+ 1). An image, I, can be notated as anN
by M matrix of pixels, PiJ. Let S(ij) be the (2R+l) x (2R+l) subimage ofl centered about
pixel PiJ for values ofi in {R+l,R+2, ... , N-R} andj in {R+l,R+2, ... , M-R}. The
convolution of image I by matrix M is defined as an N by M image I' composed of pixels
P'iJ where:

P'iJ = s f(S(ij),M) + P.for i e {R+l, ... ,N-R}, j e {R+l, ... ,M-R}
= P ij , otherwise

(l)

and f is a pixel-valued function of two matrices defined as the sum of the component wise
product of the entries of the matrices, sis a given scale factor, and Po is a given pixel
offset vector.

Now, assume that this convolution calculation is desired to be split into T threads.
Putting this in context, typically N and M are large numbers (in the range of 500 to 4000),
R is a small number (in the range of 1 to 3), and Tis also a small number (in the range of
2 to 1 0). The following algorithm is based on splitting image I into T strips, II' ... , Ir Let
NT be LN IT J. Define strip I, to be the NT by M submatrix of I formed by taking rows
starting at (i-l)NT+ 1 in I (padding the last strip IT if N is not an integral multiple ofT).
The basic idea is to process each strip independently in separate threads. However, the
strips depend on each other at their boundaries (due to the PND nature of the convolution
calculation). To solve this problem, define the boundary i (where i e { 1 , ... ,T-1}) between
strip i and i+l, B,, to be the (2R+ 1) by M image consisting ofthe first R+l rows of strip
i+ l and the previous R rows of strip i. These boundary images B, represent those pixels
that are within the convolution matrix neighborhood for the edge pixels within each of the
image strips. Note that the number of all pixels in all boundary images is a small
percentage of the overall number of pixels in the original image I (for all realistic cases).
For example, when N=M=2000 (a 2000x2000 pixel image), R=2 (5x5 convolution
matrix), and T=4, the percentage of pixels in the set of three boundaries to the overall
number of pixels in the image is only 0.75%. Figure 1 below depicts the strips of image I
and the boundaries between those strips.

Now, the threaded algorithm can be summarized as:

1) Copy each of the boundary images into separate data structures.
2) Run the convolution calculation from equation (l) on the original image pixels

corresponding to the copied boundary images.

408

3) Swap the contents of the copied boundary pixels with those calculated in step 2
above. This results in restoring I to its original state while storing the new values of
pixels in I corresponding to the boundary images into separate data structures (for
use later).

4) For each image strip I,, create a thread to process the interior pixels of that strip
(using equation (1)). The interior pixels are defined as rows R+l through N.- R.

5) Synchronize waiting on all threads to complete.
6) Copy the saved new boundary pixels back into their original locations from image I.

The bulk of the processing occurs in step 4 where the threading occurs. Improvements
could be made in the above simplified algorithm by minimizing the amount of work done
outside the threaded and synchronization steps.

NT I,
+ ··································

2R+l * I,
~

•
•
•

....................................

B,

B,

Figure 1. Image Strips and Boundaries.

Usable Concurrent Functionality

All of the threading concepts presented thus far have been black box in nature. The
net result of these is to make the slower calculations in an application run faster on an
SMP computer architecture. However, none of these techniques help the application user
on a single-CPU machine. Also, none of these techniques represent a fundamental change
in the computing paradigm for software applications. In this section, Usable Concu"ent
Functionality (UCF) is introduced as a new software technology that does represent a
computing paradigm change. It addresses both single and multiple CPU machines in order
to optimize user productivity and system throughput.

UCF is termed as usable due to its ability to present a highly concurrent software
application to the user in an extremely intuitive and user friendly manner. As mentioned
above, UCF (and threading in general) applies to a wide class of application problems.
The examples given in this paper are all image processing in nature due to the relevance

409

to the graphic arts industry. Before describing the technical details and behaviors of a
UCF system, the general needs of users and computing that lead to UCF is presented.

The traditional approach to the design of interactive software applications is based
on processing the user's request immediately (tying up the computer resource until the
request is completed). However, this approach is not well-suited for a typical user
scenario. In this scenario, the user:

I) Thinks about the next task
2) Decides what to do
3) Tells the computer about the decision (i.e., what to do)
4) Waits while the computer works (processes)

Then, these four steps are repeated for the next task. This simple sequence of steps is
shown in Figure 2 below. Steps 1, 2, and 3 are often accomplished while viewing the
graphical user interface (GUI) of the application. If the GUI is not available during step 4,
user time is wasted while waiting for the computer to finish processing the current task.
Consider the advantage if the computer worked on accomplishing the current task while
steps l-3 are being performed by the user for the next task. In other words, the software
application lets the user work at his I her pace and does not artificially limit that user to
the pace of the computer. UCF is the embodiment of this concept.

Figure 2. The Typical Scenario.

It is obvious that in many cases a user cannot "think I decide I tell" until the results
of the previous task are complete. However, in some instances the user could "think I
decide I tell" the computer about another unrelated task within the same application while
the current task is processing.

Consider why this concept is important. For the casual user of a software application
this is not vitally important. However, for the serious production user that constantly uses
an application to produce results, any boost in productivity is important in many ways.
First of all, consider the value of the user's time. The output of the user (i.e., the work
accomplished by the user with a given software application) is proportional to the value of
that user to his I her employer. In other words, the more work the user produces from the
computer, the more return the employer gets on that user's salary and the investment in
the computer and software. It is that type of user to which UCF systems is important. This
type of user has three important attributes:

410

1) User time is important (costly).
2) Lengthy operations are typical (most tasks are time-consuming for the computer to

accomplish).
3) Multiple jobs are always in progress (the user always has multiple jobs pending to be

completed on the workstation).

UCF addresses users possessing these attributes. The following section describes the
details and behavior of a UCF system.

UCF Details

UCF is an approach to designing and presenting a software application in a manner
allowing the user to always interact with the application regardless of tasks in progress. A
full implementation of UCF requires an application to be designed from the ground up
with concurrency in mind. All contributing software must obey certain rules (or
protocols) in order to participate in the UCF architecture. The following description is in
terms of the graphical user interface (GUI) of an application implementing UCF.

Central to UCF is the ability to process data in the foreground or background under
user control. The user can push any task to the background that requires more time than a
time interval known as the user tolerance. The default value for user tolerance is 5
seconds (although it is configurable by the user). Any command initiated requiring more
than the user tolerance to complete will (within a half a second of initiation) display a
dialog box. This dialog box shows the current status of the command (a bar chart showing
the percentage complete). It also contains two buttons: Cancel and To Background. The
Cancel button allows the user to abort the command (with full cleanup of any partially
accomplished results) for all operations for which it is feasible to implement such a
cancellation feature (the majority of commands should support cancellation). The To
Background button takes the currently executing command and pushes it to the
background.

The To Background button is the default button on the dialog box (allowing the user
to push the command to the background by simply pressing the Enter key). A preference
is available that enables all such commands to be automatically pushed to the background
(without explicit user action on a command-by-command basis). Once in the background,
the user is free to work with the application. However, the data which is being operated
on is locked until the command is complete. Users are able to access locked data when
appropriate. The menus of the application reflect the legitimate operations that can be
performed on a piece of data (an element) with executing (or pending) background tasks
already specified. In some cases, a foreground task can be pushed to the background even
when there are currently executing (or pending) tasks on an element. Therefore, some
background tasks are queued to begin after completion of others.

In order to understand the types of tasks that are legitimate on locked data, all tasks
to be performed are characterized as one of five types:

411

1) Immediate read - the data is used in read only mode and access to the data is part of
the GUI of the command.

2) Deferred read - the data is used in read only mode and is not accessed during the
GUI of the command.

3) Deferred write - the GUI specifies a change to the data without referencing the actual
data. Processing the data is initiated automatically or by the user choosing an OK
button from a dialog box.

4) Deferred write with GUI read - the GUI specifies a change to the data and references
the actual data during the GUI (e.g., by providing a visual simulation of the results of
the command). Processing of the data is initiated by selecting an OK button from a
dialog box.

5) Immediate write- the data is directly written during the command's GUI.

In the above definitions, data refers to any entity that is perceived and interacted with
by the user (e.g., images, other graphical elements, files on disk, etc.). The rules which
dictate legitimate tasks on locked data include:

• When no background tasks are defined, any task can be initiated.
• When an immediate read or deferred read task is pending, any type of task other than

an immediate write can be initiated. Write tasks are queued to begin only after the
immediate read or deferred read completes. Read tasks are allowed to operate
concurrently with the pending immediate read or deferred read task.

• When any form of a write task is pending, a deferred read or a deferred write can be
initiated (and will be queued to begin only after the pending write task completes). In
some cases, a deferred write with GUI read command is "demoted" to a deferred
write command (the GUI read aspect of the command is disabled) and is also
allowed to be initiated.

Certain classes of tasks are known to be a heavy burden on the computer. Therefore,
no more than one (by default) task of a class can be executing concurrently. These classes
of tasks are controlled by queues (processed in a first-in-first-out [FIFO] order by the
UCF architecture). In reality, queues have properties which can be configured by the user
to allow more than one task in a queue to execute concurrently.

Having described pushing tasks to the background, the next discussion covers how
the user interacts with them and controls the application. This control is provided with a
Background Manager command. This command displays a dialog box (implemented as a
persi~tent dialog called a palette) that shows in a scrolling list all currently executing or
pending tasks and queues. The information shown on this dialog is constantly updated.
Optionally, this dialog can be dismissed by the user. The purpose of this dialog is to show
the state of the system. The Background Manager dialog tells the user everything about
what is going on in the application. Included in the scrolling list of tasks and queues is the
status of the task, the name of the task (the command chosen by the user), a description of
the data accessed by the task (e.g., file name, document name, thumbnail display of the

412

data, etc.), and the percentage complete. A preference is provided that enables the user to
restrict the number of tasks allowed to execute concurrently (providing system tuning).
The various states that a task can be in (and shown in the status field) are:

I) Processing - the task is currently executing.
2) Suspended - the task has been suspended by the user.
3) Ready - the task is ready to begin execution (it is not blocked by any prerequisite

task) but has not yet started (e.g., there are too many tasks already executing).
4) Waiting - the task is blocked by another task (it is queued to begin only after a

prerequisite task completes).
5) Aborting - the task received an abort but has not yet started cleaning up.
6) Cleaning up - the task is cleaning up from the abort request.
7) Completed - the task completed and will be removed from the Background Manager

dialog on the next refresh.

Features are provided by the Background Manager to control the workload of the
workstation. In particular, options are available allowing:

• A task to be suspended (execution of the task stops and waits for a resume or abort).
• A suspended task to be resumed.
• A task to be aborted with full cleanup (if applicable).
• All tasks to be paused (the execution of all tasks stop and wait for a resume or abort

action to be initiated).
• All currently paused tasks to resume processing (with previously suspended tasks

remaining suspended).
• A queue to be paused.
• A currently paused queue to be resumed.

In addition, a detailed view of any particular task can be displayed allowing more
information and controls for the task. The most important piece of additional information
on the detailed view dialog is a list of all tasks blocking that task (if any). A choice can be
made so that the user is notified when the task completes (by a beep, a message displayed
in the status bar, and I or displaying an alert dialog box). Lastly, the priority of the task
can be established I changed. The standard priorities are labeled Very High, High,
Medium, Low, and Very Low. In addition, two special priorities are available: Exclusive
(meaning this task is the only background task allowed to run) and Intermittent (meaning
this task only runs if no other background tasks are also running). An automatic priority
boosting /lowering scheme is used to maintain the interactive performance of foreground
tasks while background tasks are also running.

All of the Background Manager controls allow the user to regulate the execution of
the tasks on the computer. Rush jobs can be accommodated with suspend I resume I abort
features as well as priority setting. The Background Manager intuitively constrains the
user from getting queued tasks out the correct order by using these controls. Tasks queued
to operate on a piece of data must complete in the order they are submitted in order to get

413

the desired result. Independent tasks (not tied to the same piece of data) can complete in
any order.

Another aspect of the Background Manager is that of an activity log. Tasks are able
to post information to the activity log. The most common information posted is related to
errors encountered in processing. The user can view a list of all activity log entries and
can activate a detailed activity log for a particular task. In this way, a user can determine
any information that a background task needed to convey during processing.

Issues with the implementation of UCF include what to do when a user attempts to
exit the application while background tasks are executing. The developer must also take
care of the case where the user attempts to shutdown the computer while background
tasks are still running. Another area to be handled is error recovery. Background tasks that
encounter an error (that could be recovered by interacting with the user) need to
gracefully (and non-intrusively) request the attention of the user, allow correction of the
problem, and then proceed. Implementing a UCF-enabled system can be quite complex.
Adopting a strict object-oriented modeling and design methodology has proven to
simplify this complex process (Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen,
1991).

The basic goal of a UCF system is to prevent the user from having to wait on any
operation to complete before continuing to work. For image processing systems, alternate
approaches have been employed (such as recording image processing operations to a low
resolution file and batch processing the operations on the high-resolution image later).
These types of deferred processing systems differ from the incremental computing
approach of UCF. With UCF, it is possible for an operator to fully utilize most of the
available computing cycles of a computer while accomplishing the end result sooner than
with deferred processing systems. This is an important aspect of UCF given recent
observations (Carriero, Freeman, Gelernter, and Kaminsky, 1995) that most desktop
computers are idle much of the time. A high performance personal workstation or server
should rarely be idle for optimum utilization of that computing resource. With UCF and
this concept of incremental computing, the tasks are accomplished in less overall time
without impairing the usability of the computer and application. This increases operator
productivity and overall system throughput.

Case Study

A usability case study of an UCF-based image processing I color correction
application that also used black box threading for all of its algorithms (developed as an
R&D effort at Intergraph) was conducted to obtain quantitative timing results. The system
used for this study was an Intergraph TD-4 personal workstation. The TD-4 used
consisted of two 90 Mhz Pentium CPUs, a 512 Kbyte secondary cache, 112 Mbytes of
RAM, a PCI-based fast SCSI-2 I/0 system, two l.l Gbyte disk drives, a PCI-based
Ethernet adapter, an Intergraph GLZ (OpenGL accelerated) graphics adapter with 24
Mbytes of video RAM, and a 21" monitor running (with the GLZ adapter) at a screen

414

resolution of 1280x1024. The operating system was Microsoft's version 3.5 of Windows
NT Workstation.

The operations included in the case study were gradation change, unsharp masking,
selective color correction, color cast removal, and defect removal cloning. In terms of the
UCF architecture, each of these operations (except cloning) was implemented as a
deferred write with GUI read. Each was demoted to a deferred write whenever a pending
task was defined on the target image of the operation. The clone operation is an
immediate write command. The images used in the case study were a combination of
grayscale, RGB, and CMYK data types with in memory sizes ranging from 4 Mbytes to
50Mbytes.

By isolating the performance improvements due solely to the black box threading of
algorithms (via timing a dual CPU configuration vs. a single CPU configuration), it was
determined that such algorithms represent an average improvement of 1.75 (single CPU
time required divided by dual CPU time required) or phrased alternatively as a 75%
improvement. Peak improvements were near 1.9 (90%). Obviously 2.0 (100%) represents
the best possible ratio on a dual CPU machine achievable solely with black box threading.
The average improvement of 1. 75 was quite good considering areas of the system
implementation that were not threaded (demand tile swapping, softedge masking, and
copying of data between buffers). This result is consistent with the report by Norr (1995)
stating that the manufacturer of a leading desktop imaging application reports that a
second Pentium CPU generally yields a 60% to 90% increase in speed in that application.
While the performance gains achieved by black box threading are impressive and
important, they are not fundamental in nature. To see this, consider a dual CPU machine
running a black box threaded application. As shown in this case study, it is possible to
accelerate the application by a factor of almost two. However, that is the standard
performance increase achieved by subsequent generations of microprocessors. Therefore,
a dual CPU machine today is similar in performance to the next generation of a single
CPU machine (when only black box threading is employed).

Timing the improvements due to the user interface threading of UCF turned out to be
quite difficult. That is the reason a call for an industry standard benchmark for measuring
operator productivity and system throughput is made in the next section of this paper.
However, a few meaningful observations were made during the case study. For the
operations tested, the "think I decide I tell" cycle represented an average of 27% of the
time that was required to complete the operation. During the majority of this time, the
computer is typically idle. In a UCF system, this idle time is virtually eliminated (since
the computer is working on completing previous tasks while the operator is "thinking I
deciding I telling" for the current task). In a traditional system, the operator is more
subject to distractions causing even less utilized computer cycles. This occurs as the
operator is waiting on the current task to finish before being able to "think I decide I tell"
for the next task. If distracted while waiting, then the "think I decide I tell" cycle won't
begin as early as possible. UCF addresses this by allowing the user to continue to work at
all times. Figure 3 below depicts the increase in utilization of computer cycles from a

415

traditional system to a black box threaded system to a UCF system also using black box
threading. In addition, consider an 8 hour shift where an operator is allowed a 45 minute
meal break and averages a 15 minute break every two hours. This down time represents
22% of the available time in that shift. A trained operator of a UCF system can easily
eliminate most of this down time by getting ahead of the application (by pushing tasks to
the background) prior to each of these down times. In this scenario, very few of the
available computing cycles would be wasted. Further gains could be realized by effective
operators getting far enough ahead of the application so that a substantial portion of the
following shift would be consumed by the computer catching up with the tasks pushed to
the background. This could reduce labor costs within shops running multiple shifts or
increase the throughput of shops running single shifts.

Type of System Elapsed Time (2 tasks)

Traditional System

Black Box Threaded

UCF with Black Box

Time user spends in "think I decide I tell" cycle

r----.1 Time computer spends working on task

- Time between tasks due to distractions (gaps)

Figure 3. Computer Utilization Comparison.

The priority scheme implemented in the UCF-based system proved quite effective at
allowing the interactive defect removal cloning to occur in the foreground while multiple
tasks were allowed to execute in the background. The feeling to the operator was that the
cloning was not perceptibly impaired by the tasks processing in the background. The
automatic priority boosting /lowering of the UCF implementation for foreground I
background tasks were key to this result.

Future Work - Proposed Benchmark

As mentioned above, testing and timing a UCF-enabled application to determine true
performance improvements is difficult. It is well known within the computing industry
that benchmarks are used to quantify performance of hardware platforms. However, the
advent of commercially available SMP computers running SMP-enabled operating

416

systems and the emergence of software applications exploiting these computers and
operating systems has created a new situation in the industry. This situation is that system
performance is now very much a function of the architecture of the software application.
A carefully threaded application employing black box threading and UCF can
substantially out perform even the best black box threaded application (not to mention
non-threaded applications). Also, a UCF application is also superior on a single CPU
computer. However, these results cannot be effectively quantified by only measuring the
speed of individual commands (operations). A more global measurement (i.e., a
benchmark) is needed for this quantification.

The desired benchmark should attempt to measure the true operator productivity and
system throughput of the combination of the software application, the hardware platform,
and the underlying operating system. Examples of measures of system throughput of
interest in the graphic arts include number of scans color corrected per shift, number of
pages trapped and assembled per shift, number of PostScript files imaged per shift, etc.
The result of the benchmark could be used to isolate the performance differences between
competing software applications (by holding constant the underlying hardware and
operating systems).

Conclusions

The future promises significant changes in the way software is developed for
demanding disciplines. There is a long learning curve to be able to effectively implement
a UCF like system and a moderate learning curve to be able to implement black box
threading. As shown in this paper, the results for the user (and shop owner) are impressive
when an SMP computer is coupled with the Windows NT operating system and a
properly threaded application (that includes both black box threading and UCF). The
software industry appears to be generally behind the capabilities of the hardware in terms
of writing applications that can utilize most of the available computing cycles. The
techniques presented in this paper prove to be effective at capturing the vast majority of
these available cycles. The future holds an exciting time where computers are able to be
upgraded with "banks" of additional CPUs to boost the performance of all properly
written applications (lessening the need for dedicated special purpose accelerator cards in
wide use today). Such upgrades will be viewed by tomorrow's user exactly like upgrades
of adding more RAM or disks are viewed today. Technologies like UCF are important for
making this vision of the future a winning proposition for the end user of software
applications.

Acknowledgments

We thank our colleagues in the Digital Imaging Department of Intergraph for
assisting in the preparation and production of this paper. In addition, we thank the
executive management at Intergraph for allowing this information to be made public.

417

Literature Cited

Adler, R.
1995"Emerging Standards for Component Software", Computer (IEEE Computer

Society), vol. 28, no. 3, pp. 68-77.

Carriero, N., Freeman, E., Gelernter, D., and Kaminsky, D.
I995"Adaptive Parallelism and Piranha", Computer (IEEE Computer Society), vol.

28, no. I, pp. 40-49.

Custer, H.
1993"Inside Windows N'fTM'' (Microsoft Press, Redmond, WA), pp. 90-104.

Gonzalez, R. and Wintz, P.
I987"Digital Image Processing" (Second Edition, Addison-Wesley Publishing

Company, Reading, MA), pp. 81-90, 186-190.

Mui, L. and Talbott, S.
l99I"Guide to OSF/1 -A Technical Synopsis" (O'Reilly & Associates, Inc.,

Sebastopol, CA), pp. 2-1-2-13.

Norr,H.
l995"Multiprocessing to define desktop in next PC wave", MacWeek (Ziff-Davis

Publishing Co., New York, NY), vol. 9, no. 12, pp. l, 84.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.
l99I"Object-Oriented Modeling and Design" (Prentice-Hall, Inc., Englewood Cliffs,

NJ), 500pp.

418

