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Abstract: The Windows NTJ'M operating system's support of multithreading and 
symmetric multiprocessing enables a new class of highly parallel software technologies. 
Software will soon be judged by performance gains achieved through parallelism. 
Available techniques for concurrent processing of typical graphic arts computational 
problems are presented. A new software technology called Usable Concurrent 
Functionality is described for presenting multithreaded applications to a computer user. A 
case study is presented showing the performance gains of image and color processing 
algorithms on single and multiple CPU computers. A standard benchmark for graphic arts 
software measuring operator productivity and throughput is proposed. 

Introduction 

The computer systems of today and tomorrow are challenging application software 
developers to invent new paradigms for presenting applications to the users of their 
products. The challenge lies in harnessing the raw horsepower of the computer 
architecture and the new features of the operating systems in ways that significantly 
increase the productivity of the user and the throughput of the software application (i.e., 
the work accomplished). Another challenge is to produce applications that will 
automatically scale in performance and throughput on introduced hardware innovations 
without significant re-design of those applications. Technologies such as symmetric 
multiprocessing (SMP) and threading are key components of producing such scalable 
software architectures. 

In the Intel-based PC market, there are currently several dual Pentium based 
machines available (typically running Microsoft's Windows NT Workstation operating 
system). For servers, there are 2, 4, and 6 CPU (Pentium) machines also readily available 
(typically running Microsoft's Windows NT Server operating system). In fact, there is a 
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new category of machines known as personal workstations. A personal workstation is 
simply described as a computer built from standard PC components (CPU, RAM, disk 
controllers, graphics, network) that run standard operating systems and are capable of 
delivering the performance of traditional high-end UNIX workstations. Typically, the 
subsystems of a personal workstation are highly tuned (via careful system engineering) to 
produce workstation level performance. Dual-processor personal workstations are the 
most common today. The trend over the next 2 years is to the introduction of a new class 
of machine referred to as a personal server. A personal server is described as an 
extremely high performance machine capable of providing a dedicated service to the user 
(of a demanding application) while still filling the need of a workgroup server to other 
users. A typical graphic arts scenario would be an image processing/color correction/page 
assembly station running on a personal server that is also performing OPI picture 
replacement, printer management, and batch trapping for other users on the workgroup 
network. Personal servers will be differentiated from workstations by CPU horsepower 
(number of CPUs, clock speeds, etc.), peripheral capacity, and the use of a server-enabled 
operating system. The Windows NT scalable family of operating systems (Workstation 
and Server) is the logical choice for personal workstation and personal server machines. 
Its architecture was designed from the ground up supporting SMP machines and is itself 
fully threaded. 

Workstations based on SMP technologies have existed under UNIX for several 
years. However, they never became mainstream for several reasons (cost, lack of SMP­
enabled software applications, and the proprietary nature of workstations). The Open 
Software Foundation (OS F) operating system provided an SMP-enabled platform and has 
been well documented (Mui and Talbott, 1991). 

The Macintosh and Power Mac platform that is so prevalent in the graphic arts is 
significantly behind in terms of SMP hardware architectures and operating systems. Norr 
(1995) recently reported that although the first Power Mac SMP machines (actually 
clones) have been announced for shipment in August 1995, Apple's plans for integrated 
SMP support within its operating system will most likely surface in late 1996 to mid-
1997. Some interim solutions will be available from vendors to give applications access to 
multiple CPUs. However, these solutions will not be optimal. 

Therefore, the fact that Windows NT is available today and was designed 
specifically for scalability in terms of SMP computer architectures coupled with the lack 
of true SMP support on the mainstream graphic arts platform leads the developers of 
serious applications (for which personal workstations and servers are intended) to 
Windows NT as the operating system of choice. 

Threading Concepts 

Concurrency is an attribute of a software design that allows a single application 
to execute independently in two or more code locations. Traditional multi-tasking 
operating systems allow concurrency between individual processes (i.e., programs). 
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Modern operating systems (such as the Windows NT family) are symmetric 
multiprocessing (SMP) and allow individual programs (processes) to be composed of 
threads. A thread is a unit of code in a process that can proceed independently of other 
threads. In simple terms a process is a task that is requested of the operating system while 
a thread is one independent subtask necessary to accomplish the overall task. 

In an SMP operating system, a multi-tasking technique is employed when there are 
more threads waiting to run than there are CPUs available to run them. Context switching 
is used to switch the execution on a processor between the threads that are waiting to run. 
A thread's context is defined as a set of volatile registers representing the state of the 
processor, the user and kernel mode stacks used by the thread, and a private storage area 
(Custer, 1993). Context switching is the process of saving a running thread's context, 
loading the context of another thread, and beginning the execution of that thread. The 
saved context allows the original thread to return to execution at its next scheduled time 
slice. 

Writing a multithreaded application is difficult. This is due to the fact that each 
thread within a process has access to that process's address space and resources. This can 
cause threads to "step on each other," produce random results, and produce hard to track 
software errors (such as deadlock). A key concept for providing order within a 
multithreaded application is synchroniwtion. This provides the ability for a thread to wait 
for another thread to complete an operation before proceeding. Access to global data, 
peripherals, and application resources must be synchronized in a multithreaded 
application. To illustrate this concept, consider the following example. Thread A reaches 
a point where it needs to obtain a free memory buffer from the pool of previously 
allocated buffers. It determines that a buffer is available. It then reserves access to that 
buffer. To illustrate the potential problems in a multithreaded environment, assume that 
thread B also needs a memory buffer. If thread B looks to determine availability of a 
buffer after thread A has reserved its buffer, no problems would occur. However (due to 
context switching and parallel execution on multiple CPUs) it is possible that thread A 
could determine that buffer N is available. Then, thread B could also determine that N is 
available. Thread A reserves buffer N. Then, thread B also reserves buffer N. This 
represents an obvious serious flaw. The solution to the problem is to synchronize access 
to the data structure that controls the pool of memory buffers. In other words, only allow 
one thread to access this data structure at a time. This allows the sequence of reading the 
data structure (to determine availability of a buffer) and writing the data structure (to 
reserve a free buffer) to be indivisible (i.e., can't be interrupted by access from another 
thread). Synchronization is accomplished by such constructs as event objects, semaphore 
objects, code critical sections, and mutual exclusion. 

Since a multithreaded application is difficult to build and most applications consist 
of many underlying libraries and services (some of which are not under the control of the 
primary application developers), the notion of code thread safety is important. A body of 
software is called thread safe if it is known to be able to be used within a multithreaded 
environment. In general, software is not thread safe if access to global data and resources 
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is not synchronized. Also, state driven software is generally not thread safe. Since the 
concepts of threading are relatively new, most existing software is not thread safe. This 
provides great difficulty in building applications for SMP architectures. In order to make 
a body of software thread safe, the developers must be concerned with the aspects of 
concurrency and Jearn to program "defensively." While this type of programming is well 
known to system programmers of operating systems and concurrent transaction based 
programs (databases, etc.), it is far from well known in the community of software 
application developers. Most developers have never been required to design and code 
software to avoid deadlock (as can easily happen in a multithreaded application when two 
or more threads need mutually exclusive access to two or more resources). Much 
education and retraining is necessary to build expertise so that truly concurrent 
applications can be built. Complicating this learning curve is the emergence of component 
software technologies (Adler, 1995) and applications composed of components largely 
unknown to the clients of the components. This makes the job of determining thread 
safety within an application a very difficult task. If components are truly unknown (in 
terms of their own thread safety), then localized threading within an application is the best 
that can be obtained. 

The most common form of threading in use today is referred to as black box 
threading. In the black box approach, computationally difficult (i.e., time consuming) 
tasks are subdivided (i.e., multithreaded) in order to reduce the time required to execute 
those tasks. The typical case is to black box thread algorithms for better performance. 
This produces faster execution of tasks within an application but does not fundamentally 
alter the basic behavior of those applications. Other forms of threading include user 
interface threading and will be discussed in more detail later. Black box threading 
represents the most straightforward form of thread implementation and provides the 
simplest path to thread safety. In the next section, computational examples of black box 
threading applicable to the graphic arts are given. 

Computational Concepts and Examples 

The computational and threading techniques presented in this paper are applicable to 
a wide variety of problems. However, image processing is a discipline well suited to 
parallelism and is also very important within the graphic arts. Therefore, the remainder of 
this paper will focus on a class of image processing problems to demonstrate the concepts 
being conveyed. 

Many traditional graphic arts image processing operations are applicable to the 
technique of black box threading mentioned above. Examples include unsharp masking, 
gradation, selective color correction, color separation, convolution filters, raster-based 
trapping, etc. Such algorithms are either pixel neighborhood independent (PNI) or pixel 
neighborhood dependent (PND). Examples of PNI operations are gradation, selective 
color correction, and color separation. These operations can be executed on a pixel 
without knowledge of the values of surrounding pixels. Examples of PND operations are 
unsharp masking, convolution filters, and trapping. In order to perform one of these 
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operations on a pixel, the surrounding pixel values must be accessed. In general, PND 
algorithms are more difficult to thread than PNI algorithms. In the following example, a 
convolution filter (PND algorithm) is demonstrated in terms of a possible threaded 
implementation. This implementation is provided for illustration purposes only and is not 
implied to be an optimal approach. 

Recall that a convolution filter (Gonzalez and Wintz, 1987) is implemented digitally 
on an image in terms of a convolution matrix, M, of radius R (where R is typically 1, 2, or 
3). Such a matrix is of dimensions (2R+ l) x (2R+ 1). An image, I, can be notated as anN 
by M matrix of pixels, PiJ. Let S(ij) be the (2R+l) x (2R+l) subimage ofl centered about 
pixel PiJ for values ofi in {R+l,R+2, ... , N-R} andj in {R+l,R+2, ... , M-R}. The 
convolution of image I by matrix M is defined as an N by M image I' composed of pixels 
P'iJ where: 

P'iJ = s f(S(ij),M) + P.for i e {R+l, ... ,N-R}, j e {R+l, ... ,M-R} 
= P ij , otherwise 

(l) 

and f is a pixel-valued function of two matrices defined as the sum of the component wise 
product of the entries of the matrices, sis a given scale factor, and Po is a given pixel 
offset vector. 

Now, assume that this convolution calculation is desired to be split into T threads. 
Putting this in context, typically N and M are large numbers (in the range of 500 to 4000), 
R is a small number (in the range of 1 to 3), and Tis also a small number (in the range of 
2 to 1 0). The following algorithm is based on splitting image I into T strips, II' ... , Ir Let 
NT be LN IT J. Define strip I, to be the NT by M submatrix of I formed by taking rows 
starting at (i-l)NT+ 1 in I (padding the last strip IT if N is not an integral multiple ofT). 
The basic idea is to process each strip independently in separate threads. However, the 
strips depend on each other at their boundaries (due to the PND nature of the convolution 
calculation). To solve this problem, define the boundary i (where i e { 1 , ... ,T-1}) between 
strip i and i+l, B,, to be the (2R+ 1) by M image consisting ofthe first R+l rows of strip 
i+ l and the previous R rows of strip i. These boundary images B, represent those pixels 
that are within the convolution matrix neighborhood for the edge pixels within each of the 
image strips. Note that the number of all pixels in all boundary images is a small 
percentage of the overall number of pixels in the original image I (for all realistic cases). 
For example, when N=M=2000 (a 2000x2000 pixel image), R=2 (5x5 convolution 
matrix), and T=4, the percentage of pixels in the set of three boundaries to the overall 
number of pixels in the image is only 0.75%. Figure 1 below depicts the strips of image I 
and the boundaries between those strips. 

Now, the threaded algorithm can be summarized as: 

1 ) Copy each of the boundary images into separate data structures. 
2 ) Run the convolution calculation from equation (l) on the original image pixels 

corresponding to the copied boundary images. 
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3 ) Swap the contents of the copied boundary pixels with those calculated in step 2 
above. This results in restoring I to its original state while storing the new values of 
pixels in I corresponding to the boundary images into separate data structures (for 
use later). 

4 ) For each image strip I,, create a thread to process the interior pixels of that strip 
(using equation (1)). The interior pixels are defined as rows R+l through N.- R. 

5 ) Synchronize waiting on all threads to complete. 
6 ) Copy the saved new boundary pixels back into their original locations from image I. 

The bulk of the processing occurs in step 4 where the threading occurs. Improvements 
could be made in the above simplified algorithm by minimizing the amount of work done 
outside the threaded and synchronization steps. 

NT I, 
+ ·································· 

2R+l * I, 
~ ......................................... . 

• 
• 
• 

.................................... 

B, 

B, 

Figure 1. Image Strips and Boundaries. 

Usable Concurrent Functionality 

All of the threading concepts presented thus far have been black box in nature. The 
net result of these is to make the slower calculations in an application run faster on an 
SMP computer architecture. However, none of these techniques help the application user 
on a single-CPU machine. Also, none of these techniques represent a fundamental change 
in the computing paradigm for software applications. In this section, Usable Concu"ent 
Functionality (UCF) is introduced as a new software technology that does represent a 
computing paradigm change. It addresses both single and multiple CPU machines in order 
to optimize user productivity and system throughput. 

UCF is termed as usable due to its ability to present a highly concurrent software 
application to the user in an extremely intuitive and user friendly manner. As mentioned 
above, UCF (and threading in general) applies to a wide class of application problems. 
The examples given in this paper are all image processing in nature due to the relevance 
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to the graphic arts industry. Before describing the technical details and behaviors of a 
UCF system, the general needs of users and computing that lead to UCF is presented. 

The traditional approach to the design of interactive software applications is based 
on processing the user's request immediately (tying up the computer resource until the 
request is completed). However, this approach is not well-suited for a typical user 
scenario. In this scenario, the user: 

I ) Thinks about the next task 
2 ) Decides what to do 
3 ) Tells the computer about the decision (i.e., what to do) 
4) Waits while the computer works (processes) 

Then, these four steps are repeated for the next task. This simple sequence of steps is 
shown in Figure 2 below. Steps 1, 2, and 3 are often accomplished while viewing the 
graphical user interface (GUI) of the application. If the GUI is not available during step 4, 
user time is wasted while waiting for the computer to finish processing the current task. 
Consider the advantage if the computer worked on accomplishing the current task while 
steps l-3 are being performed by the user for the next task. In other words, the software 
application lets the user work at his I her pace and does not artificially limit that user to 
the pace of the computer. UCF is the embodiment of this concept. 

Figure 2. The Typical Scenario. 

It is obvious that in many cases a user cannot "think I decide I tell" until the results 
of the previous task are complete. However, in some instances the user could "think I 
decide I tell" the computer about another unrelated task within the same application while 
the current task is processing. 

Consider why this concept is important. For the casual user of a software application 
this is not vitally important. However, for the serious production user that constantly uses 
an application to produce results, any boost in productivity is important in many ways. 
First of all, consider the value of the user's time. The output of the user (i.e., the work 
accomplished by the user with a given software application) is proportional to the value of 
that user to his I her employer. In other words, the more work the user produces from the 
computer, the more return the employer gets on that user's salary and the investment in 
the computer and software. It is that type of user to which UCF systems is important. This 
type of user has three important attributes: 
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1 ) User time is important (costly). 
2 ) Lengthy operations are typical (most tasks are time-consuming for the computer to 

accomplish). 
3 ) Multiple jobs are always in progress (the user always has multiple jobs pending to be 

completed on the workstation). 

UCF addresses users possessing these attributes. The following section describes the 
details and behavior of a UCF system. 

UCF Details 

UCF is an approach to designing and presenting a software application in a manner 
allowing the user to always interact with the application regardless of tasks in progress. A 
full implementation of UCF requires an application to be designed from the ground up 
with concurrency in mind. All contributing software must obey certain rules (or 
protocols) in order to participate in the UCF architecture. The following description is in 
terms of the graphical user interface (GUI) of an application implementing UCF. 

Central to UCF is the ability to process data in the foreground or background under 
user control. The user can push any task to the background that requires more time than a 
time interval known as the user tolerance. The default value for user tolerance is 5 
seconds (although it is configurable by the user). Any command initiated requiring more 
than the user tolerance to complete will (within a half a second of initiation) display a 
dialog box. This dialog box shows the current status of the command (a bar chart showing 
the percentage complete). It also contains two buttons: Cancel and To Background. The 
Cancel button allows the user to abort the command (with full cleanup of any partially 
accomplished results) for all operations for which it is feasible to implement such a 
cancellation feature (the majority of commands should support cancellation). The To 
Background button takes the currently executing command and pushes it to the 
background. 

The To Background button is the default button on the dialog box (allowing the user 
to push the command to the background by simply pressing the Enter key). A preference 
is available that enables all such commands to be automatically pushed to the background 
(without explicit user action on a command-by-command basis). Once in the background, 
the user is free to work with the application. However, the data which is being operated 
on is locked until the command is complete. Users are able to access locked data when 
appropriate. The menus of the application reflect the legitimate operations that can be 
performed on a piece of data (an element) with executing (or pending) background tasks 
already specified. In some cases, a foreground task can be pushed to the background even 
when there are currently executing (or pending) tasks on an element. Therefore, some 
background tasks are queued to begin after completion of others. 

In order to understand the types of tasks that are legitimate on locked data, all tasks 
to be performed are characterized as one of five types: 

411 



1 ) Immediate read - the data is used in read only mode and access to the data is part of 
the GUI of the command. 

2 ) Deferred read - the data is used in read only mode and is not accessed during the 
GUI of the command. 

3 ) Deferred write - the GUI specifies a change to the data without referencing the actual 
data. Processing the data is initiated automatically or by the user choosing an OK 
button from a dialog box. 

4 ) Deferred write with GUI read - the GUI specifies a change to the data and references 
the actual data during the GUI (e.g., by providing a visual simulation of the results of 
the command). Processing of the data is initiated by selecting an OK button from a 
dialog box. 

5 ) Immediate write- the data is directly written during the command's GUI. 

In the above definitions, data refers to any entity that is perceived and interacted with 
by the user (e.g., images, other graphical elements, files on disk, etc.). The rules which 
dictate legitimate tasks on locked data include: 

• When no background tasks are defined, any task can be initiated. 
• When an immediate read or deferred read task is pending, any type of task other than 

an immediate write can be initiated. Write tasks are queued to begin only after the 
immediate read or deferred read completes. Read tasks are allowed to operate 
concurrently with the pending immediate read or deferred read task. 

• When any form of a write task is pending, a deferred read or a deferred write can be 
initiated (and will be queued to begin only after the pending write task completes). In 
some cases, a deferred write with GUI read command is "demoted" to a deferred 
write command (the GUI read aspect of the command is disabled) and is also 
allowed to be initiated. 

Certain classes of tasks are known to be a heavy burden on the computer. Therefore, 
no more than one (by default) task of a class can be executing concurrently. These classes 
of tasks are controlled by queues (processed in a first-in-first-out [FIFO] order by the 
UCF architecture). In reality, queues have properties which can be configured by the user 
to allow more than one task in a queue to execute concurrently. 

Having described pushing tasks to the background, the next discussion covers how 
the user interacts with them and controls the application. This control is provided with a 
Background Manager command. This command displays a dialog box (implemented as a 
persi~tent dialog called a palette) that shows in a scrolling list all currently executing or 
pending tasks and queues. The information shown on this dialog is constantly updated. 
Optionally, this dialog can be dismissed by the user. The purpose of this dialog is to show 
the state of the system. The Background Manager dialog tells the user everything about 
what is going on in the application. Included in the scrolling list of tasks and queues is the 
status of the task, the name of the task (the command chosen by the user), a description of 
the data accessed by the task (e.g., file name, document name, thumbnail display of the 
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data, etc.), and the percentage complete. A preference is provided that enables the user to 
restrict the number of tasks allowed to execute concurrently (providing system tuning). 
The various states that a task can be in (and shown in the status field) are: 

I ) Processing - the task is currently executing. 
2 ) Suspended - the task has been suspended by the user. 
3 ) Ready - the task is ready to begin execution (it is not blocked by any prerequisite 

task) but has not yet started (e.g., there are too many tasks already executing). 
4) Waiting - the task is blocked by another task (it is queued to begin only after a 

prerequisite task completes). 
5 ) Aborting - the task received an abort but has not yet started cleaning up. 
6 ) Cleaning up - the task is cleaning up from the abort request. 
7 ) Completed - the task completed and will be removed from the Background Manager 

dialog on the next refresh. 

Features are provided by the Background Manager to control the workload of the 
workstation. In particular, options are available allowing: 

• A task to be suspended (execution of the task stops and waits for a resume or abort). 
• A suspended task to be resumed. 
• A task to be aborted with full cleanup (if applicable). 
• All tasks to be paused (the execution of all tasks stop and wait for a resume or abort 

action to be initiated). 
• All currently paused tasks to resume processing (with previously suspended tasks 

remaining suspended). 
• A queue to be paused. 
• A currently paused queue to be resumed. 

In addition, a detailed view of any particular task can be displayed allowing more 
information and controls for the task. The most important piece of additional information 
on the detailed view dialog is a list of all tasks blocking that task (if any). A choice can be 
made so that the user is notified when the task completes (by a beep, a message displayed 
in the status bar, and I or displaying an alert dialog box). Lastly, the priority of the task 
can be established I changed. The standard priorities are labeled Very High, High, 
Medium, Low, and Very Low. In addition, two special priorities are available: Exclusive 
(meaning this task is the only background task allowed to run) and Intermittent (meaning 
this task only runs if no other background tasks are also running). An automatic priority 
boosting /lowering scheme is used to maintain the interactive performance of foreground 
tasks while background tasks are also running. 

All of the Background Manager controls allow the user to regulate the execution of 
the tasks on the computer. Rush jobs can be accommodated with suspend I resume I abort 
features as well as priority setting. The Background Manager intuitively constrains the 
user from getting queued tasks out the correct order by using these controls. Tasks queued 
to operate on a piece of data must complete in the order they are submitted in order to get 
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the desired result. Independent tasks (not tied to the same piece of data) can complete in 
any order. 

Another aspect of the Background Manager is that of an activity log. Tasks are able 
to post information to the activity log. The most common information posted is related to 
errors encountered in processing. The user can view a list of all activity log entries and 
can activate a detailed activity log for a particular task. In this way, a user can determine 
any information that a background task needed to convey during processing. 

Issues with the implementation of UCF include what to do when a user attempts to 
exit the application while background tasks are executing. The developer must also take 
care of the case where the user attempts to shutdown the computer while background 
tasks are still running. Another area to be handled is error recovery. Background tasks that 
encounter an error (that could be recovered by interacting with the user) need to 
gracefully (and non-intrusively) request the attention of the user, allow correction of the 
problem, and then proceed. Implementing a UCF-enabled system can be quite complex. 
Adopting a strict object-oriented modeling and design methodology has proven to 
simplify this complex process (Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen, 
1991). 

The basic goal of a UCF system is to prevent the user from having to wait on any 
operation to complete before continuing to work. For image processing systems, alternate 
approaches have been employed (such as recording image processing operations to a low­
resolution file and batch processing the operations on the high-resolution image later). 
These types of deferred processing systems differ from the incremental computing 
approach of UCF. With UCF, it is possible for an operator to fully utilize most of the 
available computing cycles of a computer while accomplishing the end result sooner than 
with deferred processing systems. This is an important aspect of UCF given recent 
observations (Carriero, Freeman, Gelernter, and Kaminsky, 1995) that most desktop 
computers are idle much of the time. A high performance personal workstation or server 
should rarely be idle for optimum utilization of that computing resource. With UCF and 
this concept of incremental computing, the tasks are accomplished in less overall time 
without impairing the usability of the computer and application. This increases operator 
productivity and overall system throughput. 

Case Study 

A usability case study of an UCF-based image processing I color correction 
application that also used black box threading for all of its algorithms (developed as an 
R&D effort at Intergraph) was conducted to obtain quantitative timing results. The system 
used for this study was an Intergraph TD-4 personal workstation. The TD-4 used 
consisted of two 90 Mhz Pentium CPUs, a 512 Kbyte secondary cache, 112 Mbytes of 
RAM, a PCI-based fast SCSI-2 I/0 system, two l.l Gbyte disk drives, a PCI-based 
Ethernet adapter, an Intergraph GLZ (OpenGL accelerated) graphics adapter with 24 
Mbytes of video RAM, and a 21" monitor running (with the GLZ adapter) at a screen 
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resolution of 1280x1024. The operating system was Microsoft's version 3.5 of Windows 
NT Workstation. 

The operations included in the case study were gradation change, unsharp masking, 
selective color correction, color cast removal, and defect removal cloning. In terms of the 
UCF architecture, each of these operations (except cloning) was implemented as a 
deferred write with GUI read. Each was demoted to a deferred write whenever a pending 
task was defined on the target image of the operation. The clone operation is an 
immediate write command. The images used in the case study were a combination of 
grayscale, RGB, and CMYK data types with in memory sizes ranging from 4 Mbytes to 
50Mbytes. 

By isolating the performance improvements due solely to the black box threading of 
algorithms (via timing a dual CPU configuration vs. a single CPU configuration), it was 
determined that such algorithms represent an average improvement of 1.75 (single CPU 
time required divided by dual CPU time required) or phrased alternatively as a 75% 
improvement. Peak improvements were near 1.9 (90%). Obviously 2.0 (100%) represents 
the best possible ratio on a dual CPU machine achievable solely with black box threading. 
The average improvement of 1. 75 was quite good considering areas of the system 
implementation that were not threaded (demand tile swapping, softedge masking, and 
copying of data between buffers). This result is consistent with the report by Norr (1995) 
stating that the manufacturer of a leading desktop imaging application reports that a 
second Pentium CPU generally yields a 60% to 90% increase in speed in that application. 
While the performance gains achieved by black box threading are impressive and 
important, they are not fundamental in nature. To see this, consider a dual CPU machine 
running a black box threaded application. As shown in this case study, it is possible to 
accelerate the application by a factor of almost two. However, that is the standard 
performance increase achieved by subsequent generations of microprocessors. Therefore, 
a dual CPU machine today is similar in performance to the next generation of a single 
CPU machine (when only black box threading is employed). 

Timing the improvements due to the user interface threading of UCF turned out to be 
quite difficult. That is the reason a call for an industry standard benchmark for measuring 
operator productivity and system throughput is made in the next section of this paper. 
However, a few meaningful observations were made during the case study. For the 
operations tested, the "think I decide I tell" cycle represented an average of 27% of the 
time that was required to complete the operation. During the majority of this time, the 
computer is typically idle. In a UCF system, this idle time is virtually eliminated (since 
the computer is working on completing previous tasks while the operator is "thinking I 
deciding I telling" for the current task). In a traditional system, the operator is more 
subject to distractions causing even less utilized computer cycles. This occurs as the 
operator is waiting on the current task to finish before being able to "think I decide I tell" 
for the next task. If distracted while waiting, then the "think I decide I tell" cycle won't 
begin as early as possible. UCF addresses this by allowing the user to continue to work at 
all times. Figure 3 below depicts the increase in utilization of computer cycles from a 
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traditional system to a black box threaded system to a UCF system also using black box 
threading. In addition, consider an 8 hour shift where an operator is allowed a 45 minute 
meal break and averages a 15 minute break every two hours. This down time represents 
22% of the available time in that shift. A trained operator of a UCF system can easily 
eliminate most of this down time by getting ahead of the application (by pushing tasks to 
the background) prior to each of these down times. In this scenario, very few of the 
available computing cycles would be wasted. Further gains could be realized by effective 
operators getting far enough ahead of the application so that a substantial portion of the 
following shift would be consumed by the computer catching up with the tasks pushed to 
the background. This could reduce labor costs within shops running multiple shifts or 
increase the throughput of shops running single shifts. 

Type of System Elapsed Time (2 tasks) 

Traditional System 

Black Box Threaded 

UCF with Black Box 

Time user spends in "think I decide I tell" cycle 

r----.1 Time computer spends working on task 

- Time between tasks due to distractions (gaps) 

Figure 3. Computer Utilization Comparison. 

The priority scheme implemented in the UCF-based system proved quite effective at 
allowing the interactive defect removal cloning to occur in the foreground while multiple 
tasks were allowed to execute in the background. The feeling to the operator was that the 
cloning was not perceptibly impaired by the tasks processing in the background. The 
automatic priority boosting /lowering of the UCF implementation for foreground I 
background tasks were key to this result. 

Future Work - Proposed Benchmark 

As mentioned above, testing and timing a UCF-enabled application to determine true 
performance improvements is difficult. It is well known within the computing industry 
that benchmarks are used to quantify performance of hardware platforms. However, the 
advent of commercially available SMP computers running SMP-enabled operating 
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systems and the emergence of software applications exploiting these computers and 
operating systems has created a new situation in the industry. This situation is that system 
performance is now very much a function of the architecture of the software application. 
A carefully threaded application employing black box threading and UCF can 
substantially out perform even the best black box threaded application (not to mention 
non-threaded applications). Also, a UCF application is also superior on a single CPU 
computer. However, these results cannot be effectively quantified by only measuring the 
speed of individual commands (operations). A more global measurement (i.e., a 
benchmark) is needed for this quantification. 

The desired benchmark should attempt to measure the true operator productivity and 
system throughput of the combination of the software application, the hardware platform, 
and the underlying operating system. Examples of measures of system throughput of 
interest in the graphic arts include number of scans color corrected per shift, number of 
pages trapped and assembled per shift, number of PostScript files imaged per shift, etc. 
The result of the benchmark could be used to isolate the performance differences between 
competing software applications (by holding constant the underlying hardware and 
operating systems). 

Conclusions 

The future promises significant changes in the way software is developed for 
demanding disciplines. There is a long learning curve to be able to effectively implement 
a UCF like system and a moderate learning curve to be able to implement black box 
threading. As shown in this paper, the results for the user (and shop owner) are impressive 
when an SMP computer is coupled with the Windows NT operating system and a 
properly threaded application (that includes both black box threading and UCF). The 
software industry appears to be generally behind the capabilities of the hardware in terms 
of writing applications that can utilize most of the available computing cycles. The 
techniques presented in this paper prove to be effective at capturing the vast majority of 
these available cycles. The future holds an exciting time where computers are able to be 
upgraded with "banks" of additional CPUs to boost the performance of all properly 
written applications (lessening the need for dedicated special purpose accelerator cards in 
wide use today). Such upgrades will be viewed by tomorrow's user exactly like upgrades 
of adding more RAM or disks are viewed today. Technologies like UCF are important for 
making this vision of the future a winning proposition for the end user of software 
applications. 
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