
A FINAL FORM DOCUMENT ARCHITECTURE FOR INTEGRAT
ING MULTIPLE DATA FORMATS

Reinhard H. Hohensee•

Keywords: Color, Document, Format, Information, Print.

Abstract: The Mixed Object Document Content Architecture (MO:DCA)
is used in IBM presentation environments to define an interchange format for
final form documents. The architecture defmes document content and layout
in a hierarchy of lower-level components and objects using a natural, self
defining syntax.

Traditionally, pages in MO:DCA documents were built with data objects that
were limited to a small number of fixed formats. An extension is being de
veloped that will allow pages to be built with a mixture of data specified in
any of the popular data formats used in the graphics industry. This extension
proves particularly useful for adding full-process color data to MO:DCA
documents.

This paper will provide an overview of MO:DCA showing the traditional
support for limited data formats. It will then describe how the architecture
is being extended to support all of the popular data formats using the concept
of an object container.

Introduction

The development of formal descriptions for document structure and content
was spawned in the early 1980s by two main forces· (l) the rapid evolution
of all-points-addressable (APA) print technologies, and (2) the revolution in
computer communications. These forces required that documents to be
printed be generated in a format that was independent of device technologies
and resolutions and that could be interchanged among applications using a
variety of networks and networking protocols. A number of different docu
ment architectures and page description languages were developed to meet
these needs, among them Adobe's PostScript, Hewlett-Packard's Printer
Control Language (PCL), and IBM's Mixed Object Document Content Ar
chitecture (MO:DCA). The latter has been known by a number of other

•IBM, Printer Systems Company, Boulder, Co 80301. 303-924-4824.

450

names over the years - the Composed Page Data Stream (CPOS), the Com
posite Document Presentation Data Stream (CDPDS), and the Advanced
Function Printing Data Stream (AFPDS).

Final Form Document Architectures

The purpose of a document architecture is to provide a format for documents
that facilitates their processing, presentation, and interchange. A suitable
definition is the following:

docummt architecture. Formally-defmed syntax and semantics for describing
a document.

Document architectures can be coarsely divided into two categories - (I)
document architectures that describe final form documents, and (2) document
architectures that describe revisable form documents.

final form docummt. A document that has been formatted for presentation
(print or view). A fmal form document is not easily editable.

Examples of document architectures that describe fmal form documents are:

• PostScript
• Standard Page Description Language (SPDL) (ISO 10180)
• PCL
• MO:DCA
• Office Document Architecture (ODA), (ISO 8613)

Although the remainder of this paper deals with fmal form documents, a brief
description of revisable form documents follows.

revisable form docummt. A document that is easily edited but must be for
matted before it can be presented.

Examples of document architectures that describe revisable form documents
are:

• Standard Generalized Markup Language (SGML) (ISO 8879)
• Office Document Architecture (ODA), (ISO 8613)

Traditionally, final form document architectures have focused on printing and
have aimed at providing a format for documents that is tuned and tailored for
printing. For example, the predominant early use of MO:DCA was to define
an output format for a formatting application such as IBM's Document
Composition Facility (DCF), which could be easily ingested by a print server
such as IBM's Print Services Facility (PSF), which could then use the format
to drive an APA printer like the IBM 3800-3. However in the past few years,
the scope of document architectures has broadened dramatically. Mostly this
is due to the explosion in information processing technologies that has taken
place since the advent of microprocessors, personal computers, and work
stations in the mid 1980s. These new technologies, while bringing many
benefits to today's businesses, have also increased the complexity of their in-

451

formation processing environments. Since the document continues as a
convenient metaphor for dealing with self-contained information, businesses
are focusing increasingly on using an architected document format as the data
type on which much of their information processing can be based.

For example, the MO:DCA document format is now being used in high-end
production environments served by IBM's Advanced Function Presentation
(AFP) products as the strategic information format to support the following
information processing functions:

• Document creation
• Windows and OS/2 workstation applications
• Host-based applications

• Document capture
• Scanners
• Fax
• E-mail

• Document presentation
• Print
• View
• Fax
• Microfiche

• Document management
• Index
• Archive
• Search/query/retrieve

• Document distribution
• Electronic
• CD-ROM

Mixed Object Document Content Architecture (MO:DCA)

The MO:DCA architecture is IBM's strategic document content architecture
for the interchange of final form documents. It provides syntax and seman
tics for describing the document, specifies document structure, and specifies
document content.

MO:DCA syntax consists of efficient, binary, self-defining structures that
support a complete description of fmal form documents, their resources, and
their formatting specifications. The main MO:DCA syntax component is a
structured field. A structured field starts with an introducer that specifies
length, unique identifier, and additional control information such as whether
padding bytes are present. The introducer is followed by up to 32,759 data
bytes. Data may be encoded using .frxed parameters, repeating groups,
keywords, and triplets. Fixed parameters have a meaning unique to the
structured field on which they appear. Repeating groups are used to specify
a grouping of parameters that can appear multiple times and also have a
meaning unique to the structured field on which they appear. Keywords are
self-identifying parameters that consist of a one-byte unique keyword identi
fier followed by a one-byte keyword value, and have the same semantic

452

wherever they are used. Triplets are self-identifying parameters that contain
a one-byte length, a one-byte unique triplet identifier, and up to 252 data
bytes, and, like keywords, have the same semantic wherever they are used.

The MO:DCA syntax is used to describe document structure in terms of the
following components:

•
•
•
•
•
•
•

document
page group
page
data object (text, image, graphics, bar code)
resource object (fonts, overlays)
index
resource group

All document components, as well as the data objects that define the docu
ment content, are defined as objects that are bounded by Begin and End
structured fields. Most components also carry their own environment spec
ification. This makes the MO:DCA document syntax highly ordered in that
components, such as pages, are explicitly-bounded, self-defining entities
which can be processed independent of any other document component. For
example, a MO:DCA index can be used to locate a page in an archived doc
ument, which can then be retrieved and processed without requiring the
whole document to be retrieved and processed.

The MO:DCA syntax describes document content in terms of the content of
a fixed set of data objects. An Object Content Architecture (OCA) has been
established for each IBM data object to define its respective syntax and se
mantics. The following data objects are currently supported in MO:DCA
documents:

• Text objects, defined by the Presentation Text Object Content Archi·
tecture (PTOCA), which is used to describe text information.

• Image objects, defined by the Image Object Content Architecture
(IOCA), which is used to describe raster image information.

• Graphics objects, defined by the Graphics Object Content Architecture
(GOCA), which is used to describe vector graphics.

• Bar code objects, defined by the Bar Code Object Content Architecture
(BCOCA), which is used to describe bar code symbols.

• Font objects, defined by the Font Object Content Architecture (FOCA),
which is used to describe font character sets and code pages.

Figure l illustrates the use of MO:DCA syntax to describe a final form doc
ument composed of pages and data objects.

453

Begin
Document Plge 1 Plge 2 . . . Page n

(BDT)

PAGE
Ontennediate lewl)

End
Document

(EDT)

_ _...

~-== 5'!:-:e.::-:.

@egln AClM
Plile Environment

PMentalion Graphics End
Text Object Oti)ect ~) (BPi) Group (AEG)

~~n ~
(BAG) Font

OBJECT
(lowaat level)

Presentation End
Text AEG

DesctiptOr (EAG)

G=:cs
Objad Graphics End

Data Graphics Environment
Otijecl Group(OEG) (GAD) Dill

I •
':I" Object o:J: Graphics End

Ana Descrlr.'r OEG
(806) Descriptor Position (GD) (E06)

Figure 1. MO:DCA Document Components

454

Color Support in MO:DCA Documents

The object content architectures that defme MO:DCA objects provide rich
and flexible functionality for their respective data types. PTOCA text objects
support single and double byte fonts, multiple text orientations, text sup
pressions, inlinejbaseline rules, and underscore/overstrike. IOCA image ob
jects support hi-level raster image with CCITT G4 compression and
grayscale/color image with JPEG compression. GOCA graphics objects
support lines, arcs, areas with pattern fill, and markers. BCOCA objects
support all of the popular bar code symbologies.

Unfortunately these object content architectures have lagged in their color
support. This is due primarily to the fact that high-end production environ
ments, which have been the major users of MO:DCA documents, have, until
the recent past, not had substantial requirements for sophisticated color
printing due to the high-cost and slow throughput that have been inherent
in color technologies. The color support in PTOCA text, GOCA graphics,
and BCOCA bar code is limited to a set of named colors which can be
specified in these objects using their pre-defmed value. The subset of values
supported by all OCA objects is shown in the following table. Note that the
rendering of these colors is device-dependent.

Value Color

X'OOOO' or X'FFOO' Presentation-process
default

X'OOOl' or X'FFOl' Blue

X'0002' or X'FF02' Red

X'0003' or X'FF03' Pink/magenta

X'0004' or X'FF04' Green

X'OOOS' or X'FFOS' Turquoise/cyan

X'0006' or X'FF06' Yellow

X'0008' Black

X'OOlO' Brown

X'FF07' Presentation -process
default

X'FF08' Color of medium

The color support in IOCA image objects is more general in that it includes
24 bit RGB and YCbCr support, but this still falls short of the color support
in Tag Image File Format (TIFF) objects.

While the object content architectures can certainly be extended to support
full-process color, a more difficult task is to rewrite existing applications to
take advantage of the new object definitions. To overcome the problems of
(1) limited color support in current MO:DCA objects and (2) difficulty in

455

changing existing applications to generate new 'colorized' objects, the exten
sions discussed in the following sections are being made to the MO:DCA
architecture. These extensions take advantage of the sophisticated color
support in non-OCA graphics data formats such as TIFF and Encapsulated
PostScript (EPS) by providing structures that allow these data formats to be
included on a MO:DCA page and to be mixed on that page with other OCA
objects.

Architecture Extensions For New Data Formats

The extensions being added to MO:DCA to support object data formats
other than the currently supported formats defined by IBM Object Content
Architectures consist of three main functions:

• A generic object container structure for carrying the object data
• A robust method for identifying the object data format
• Structures and methods to include the new object data in a MO:DCA

document.

Object Container Structure for Enveloping Object Data

All objects in MO:DCA are bounded by structured fields that specify the
beginning and the end of the object. These Begin/End structured fields are
currently unique for each object type. For example, Begin Image Object
(BIM)/End Image Object (ElM) are used for image objects, and Begin
Graphics Object (BGR)/End Graphics Object (EGR) are used for graphics
objects. Inside each data object is an Object Environment Group, bounded
by Begin Object Environment Group (BOG)/End Object Environment
Group (EOG), and this is followed by the structured fields that carry the ac
tual object data, which are again unique for each object type. The complete
structure of an image object is shown below:

Begin Image Object (BIM)
Begin Object Environment Group (BOG)

Object Area Descriptor (OBD)
<specifies size of target area>

Object Area Position (OBP)
<specifies position/rotation of target area>

Map Image Object (MIO)
<specifies mapping>

Image Data Descriptor (IDD)
<specifies size of image space>

End Object Environment Group (EOG)
Image Picture Data (IPD)

End Image Object (ElM)

456

Analogous structures are defined for graphics and bar code objects. Since it
was desired to add support for an extendable number of new data formats,
the methodology of defining unique Begin/End/Data structured fields for
each object type was deemed too limiting. Instead, a methodology was
chosen that defines a generic container structure that can be used to carry any
new data format. Tills involved defining five new structured fields:

Begin Object Container (BOC)
End Object Container (EOC)
Object Container Data (OCD)
Map Container Data (MCD)
Container Data Descriptor (CDD)

Since current generators of the object data obviously do not generate objects
in a MO:DCA container format, the container structure was defined to be
flexible by making most of the structures optional. At minimum, the con
tainer provides Begin and End structured fields, categorizes the object into a
class, identifies the object type, and specifies the extent of the object data if
it is not carried in OCD structured fields. The object container may op
tionally include additional functions such as an Object Environment Group
(OEG) to specify the size of the data object, the position, size, and rotation
of the object or target area on the page into which the data object is to be
mapped, the mapping, such as scale-to-fit or position-and-trim, to be used,
and a partitioning of the object data into Object Container Data (OCD)
structured fields. Note that, as will be discussed later, the container structure
is not needed if the object is included using the Include Object (lOB) struc
tured field. The structure of the object container showing all permitted
structured fields is as follows:

Begin Object Container (BOC)
Begin Object Environment Group (BOG)

Object Area Descriptor (OBD)
<specifies size of target area>

Object Area Position (OBP)
<specifies position/rotation of target area>

Map Container Data (MCD)
<specifies mapping>

Map Coded Font (MCF)
<specifies fonts used in object>

Container Data Descriptor (CDD)
<specifies size of object>

End Object Environment Group (EOG)
Object Container Data (OCD)

End Object Container (EOC)

457

Object Data Format Identification

Since a generic container structure is used to carry non-OCA data objects, the
architecture must provide a means for uniquely identifying the format of the
data. This is accomplished with a new triplet, called the Object Classification
triplet, that must appear on the Begin Object Container (BOC) as well as on
any structure that references the object, such as the Include Object (lOB).
This triplet provides the following information:

• Object class, which categorizes the object according to whether it is
presentable and whether it is time-invariant.

• Structure flags that indicate whether the object is carried within
BOC/EOC, whether it contains an OEG, and whether the data is carried
in OCDs.

• A MO:OCA-registered ASN.l object identifier (OlD) for the object data
format.

• Optional information such as object type name, object level, and name
of company or organization that owns the object definition.

The most critical component in the object identification is the object OlD,
since this uniquely identifies the format in any MO:DCA environment. The
OlD uses the following ASN.l naming tree:

ISO(l)
Identified Organization(3)

IBM(18)
Objects(O)

Distributed Print(4)
Document Format(l)

MO:DCA(l)
Object Type(n)

The MO:DCA architecture is the registration authority for the last three
nodes in this tree. The registered OIDs are published in the Mixed Object
Document Content Architecture Reference, SC31-6802, IBM Corporation.
For example, the OlD registered for TIFF objects is
X'06072B 1200040 I 0 lOE'.

Structures and Methods to Include Object Data on a Page

Two methods are provided for including the new object formats on
MO:DCA pages. Note that the objects are peer objects and may be mixed
with any number and combination of traditional OCA objects on the same
MO:DCA page. Note also that the objects are always included on a page,
therefore they must be paginated. For example, if the object is TIFF, it must
be a single-image TIFF fde. If it is a multi-image TIFF fde, the presentation
system will present only the first image in the fde. Similarly, the support of
PostScript objects is limited to Encapsulated PostScript (EPS) objects,
which, by definition, are paginated.

458

The first method for including new objects is to reference these objects in the
data stream using an Include Object (lOB) structured field. Tiris is the most
convenient method since it does not require any changes to the source object
file. All of the presentation parameters that are normally specified in the
environment group of an OCA object are specified in the lOB instead:

Include Object (IOB)
object name
Object Classification triplet

object class
object structure
object OID

size of target area
position of target area
rotation of target area
mapping option

An example showing a MO:DCA page with a bar code object, a graphics
object, and a referenced TIFF image object is shown below:

Begin Page (BPG)
Begin Active Environment Group (BAG)

<page environment>
End Active Environment Group (EAG)
Begin Bar Code Object (BBC)

<bar code object>
End Bar Code Object (EBC)
Include Object (IOB)

object name = picture
Object Classification triplet

object class = time-invariant presentation
object structure = no BOC/EOC, no OEG, no OCDs
object OID = TIFF OID

size of target area
position of target area
rotation of target area
mapping option

Begin Graphics Object (BGR)
<graphics object>

End Graphics Object (EGR)
End Page (EPG)

Figure 2 illustrates the use of the lOB to include a TIFF object on a
MO:DCA page.

459

Yp

Page Xp

"i1-
l»

~-------------<(------------·

i i

I ! I !-- ---. .}

1.1 ! ~
I [I»

l
i
:.----~----------------J

Scale-to--fit
Mapping

Object = flatiron . tiff

Begin Page (BPG)

Page Environment Group

Include Object (lOB)
Object Area Position
Object Area Rotation
Object Mapping
Object Name I Type

End Page (EPG)

Figure 2. Use of the Include Object (lOB) Structure

The second method for including new non-OCA objects is to include them
directly in the data stream. This requires that the object data be carried in
an object container complete with BOC/EOC, OEG, and OCDs (analogous
to the required structure for OCA objects) and therefore requires pre
processing of the source object data. The previous example showing a
MO:DCA page with a bar code object, a graphics object, and a directly
included TIFF image object is shown below:

460

Begin Page (BPG)
Begin Active Environment Group (BAG)

<page environment>
End Active Environment Group (EAG)
Begin Bar Code Object (BBC)

<bar code object>
End Bar Code Object (EBC)
Begin Object Container (BOC)

object name = picture
Object Classification triplet

object class = time-invariant presentation
object structure = BOC/EOC, OEG, OCDs
object OID = TIFF OID

Begin Object Environment Group (BOG)
Object Area Descriptor (OBD)

<specifies size of target area>
Object Area Position (OBP)

<specifies position/rotation of target area>
Map Container Data (MCD)

<specifies mapping>
Container Data Descriptor (CDD)

<specifies size of image>
End Object Environment Group (EOG)
Object Container Data (OCD)

End Object Container (EOC)
Begin Graphics Object (BGR)

<graphics object>
End Graphics Object (EGR)

End Page (EPG)

Conclusion

The object container extensions to the MO:DCA architecture that are de·
scribed in this paper enable MO:DCA documents to support any of the
popular graphics formats being used in the information processing industry.
With support for these graphics formats, the color content of MO:DCA
documents is now limited only by the color content of the data formats. By
supporting object formats like TIFF and EPS using the new architecture ex·
tensions, MO:DCA documents can take advantage of the sophisticated color
capabilities inherent in these data formats:

• TIFF
CIEL•a•b•
RGB
CMYK
YCbCr
Palette colors

461

Grayscale
• Encapsulated PostScript (EPS)- PostScript-11 colors:

CIE-based color spaces
RGB
CMYK
Grayscale

In addition, and perhaps more importantly, with these extensions MO:DCA
documents can take advantage of the multitude of graphics applications that
generate color data in these formats and in other formats.

Selected Bibliography

Adobe Systems lnc.,"'PostScript Language Reference Manual",
(Addison-Wesley), 1990

IBM Corporation, "Bar Code Object Content Architecture Reference",
S~37~01, 1993

IBM Corporation, "Font Object Content Architecture Reference",
S~3285-02, 1993

IBM Corporation, "Image Object Content Architecture Reference",
SC31-6805-03, 1993

IBM Corporation, "Intelligent Printer Data Stream Reference",
S544-3417-04, 1993

IBM Corporation, "Graphics Object Content Architecture Reference",
SC31-68040 1, 1993

IBM Corporation, "Mixed Object Document Content Architecture
Reference", SC3l-6802-03, 1994

IBM Corporation, "Presentation Text Object Content Architecture
Reference'", SC31-6803-01, 1993

Kay, D.C.and J.R. Levine,"Graphics File Formats", (Addison-Wesley),
2nd edition, 1995

462

