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Abstract: In two previous T AGA papers [1 ][2], we have presented a model 
for optical dot gain based on a physical model of light diffusion within the paper 
sheet. The model centered around a point spread function for diffuse reflec-tion, 
which we calculated by simulations on a supercomputer. We now relate the 
parameters of our simulation model to the traditional Kubelka-Munk parameters 
K and S, and we also present a few ideas for obtaining the point spread function 
by digital image analysis. Finally, we extend the model to color printing, and show 
that the optical dot gain has a considerable impact on the color gamut of the 
reproduction process. A large optical dot gain yields a larger color gamut. For 
comparison, a simple model of physical dot gain is presented, and it is shown that 
a large physical dot gain also expands the color gamut. This could well account for 
reports that stochastic screening yields a larger color gamut than conventional 
screening. 

An image processing model for optical dot gain 

For clarity reasons, we will begin by briefly restating our model for optical dot 
gain. We assume that the print substrate (the paper) is flat, smooth and reasonably 
uniform, that the ink is placed in a thin layer entirely on top of the substrate, and 
that the ink is properly characterized by its absorption properties only. The pattern 
of ink on the surface can then be described by a two-dimensional absorption 
function, or, more conveniently, a transmission function T(x, y) taking on values 
between 0 and 1, inclusive. Light that enters the paper is diffused by the Yule­
Nielsen effect before it is reflected. This can be described by a convolution 
operation with a point spread function (PSF) for diffuse reflection, P(x, y). The 
total integral of this PSF is the diffuse reflectance Roof the print substrate, and the 
spatial extent of the PSF describes the amount of lateral spreading of light in the 
Yule-Nielsen effect. The attenuated, diffused and reflected light then has to pass 
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once more through the ink layer to reach he viewer, which is described by a final 
point-wise multiplication with the transmission function. If we denote the inci­
dent light intensity with I, the reflected image R(x, y) is thus described by: 

R(x, y) =I (T(x, y) * P(x, y)) T(x, y) 

This is a non-linear model for optical dot gain expressed in image processing 
terms. It allows for direct simulation of the reflected image from an arbitrary half­
tone pattern, provided that the PSF is known. We have shown that it is possible to 
calculate the PSF by direct simulation of the multiple scattering optical system of a 
model paper sheet, using modern computers. A typical simulated PSF for diffuse 
incident light is closely approximated by a simple exponential function: 

P(x, Y)"' R,y_!!__e"' 
2nr 

(2) 

The shape of the PSF, and of course therefore also the parameters R0 and a in the 
approximation above, depend in a non-trivial way on the scattering and 
absorption cross sections and the thickness of the substrate. The cross sections are 
in turn related to the K and 5 parameters of the famous Kubelka-Munk theory, 
although not in such a simple way as one would have hoped. 

Kubelka-Munk revisited 

The original formulation of the Kubelka-Munk (K-M) theory, which has been in 
widespread use for a long time in the papermaking business, contains two param­
eters K and 5, which describe the absorption and scattering power of the 
medium under consideration. Within the approximations of the K-M theory, the 
relations between K and 5 and the absorption and scattering cross sections cr, 
and cr,, are: 

K = 2 cr" S = cr, (3) 

It is important to remember, though, that although the solution to the K-M 
differential equations is exact, the equations themselves are only an approximation 
of the physical scattering system, and in some respects that approximation is very 
crude. 

It is commonly recognized that K-M theory breaks down for media with strong 
absorption in relation to the scattering power, and also for fairly transparent or 
translucent media. This is in fact pointed out in the original article by Kubelka 
and Munk [3], but it is a limitation that has proven to be easy to forget. 

Another less known and less studied property of K-M theory is that there is an 
inherent assumption of perfectly diffuse light everywhere inside and outside the 
medium. Upon closer scrutinization, we find that this assumption does not corre­
spond to any physically relevant, or even achievable, illumination geometry. 
Diffuse light externally incident on a surface, which is used by instruments 
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measuring the K-M parameters, is not equivalent to the peculiar internally inci­
dent diffuse light of the K-M model. 

Using our simulation model, which is able to get closer to the physical truth than 
K-M theory, we can show that this difference in fact has quite a large influence 
on the predictions from the models. Figure 1 shows two sets of curves for the pre­
dicted reflectances of isotropically scattering media with different optical 
properties. It is clearly seen that the results from K-~ theory differ significantly 
from our simulations. However, if we change the initial conditions for the 
incident light in our simulation to mimic the physically incorrect assumption of 
K-M theory, our simulations agree well with K-M theory, except for strongly 
absorbing or translucent media, where the K-M theory is not valid. This is 
illustrated in figure 2. 
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Figure 1: Pair-wise comparisons between K-M theory and our physical model 
Top curves in each pair K-M, bottom curves our model. 
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So, if we want to measure the scattering and absorption cross sections of a mate­
rial, the two K-M parameters are not the final answer. The K-M parameters are 
in fact related to the physical cross sections aa and <J5 , but not in any linear, sepa­
rable or otherwise simple and obvious way. By using a simulation like ours as a 
guidance, it is possible to fit a curve to experimental data and calculate the true 
cross sections from the same amount of measurements as is used for K-M meas-
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Figure 2: Comparison between K-M and our simulation with comparable 
assumptions. Top curves K-M, bottom curves our model. 
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urements, but it is not possible to derive a theoretical and explicit closed-form 
expression for the exact relation between either K and S or the experimental 
reflectance measurements and the cross sections cra and <J5 

The virtue of K-M theory is that the parameters lend themselves very well to 
experimental measurement. The drawback is that the assumptions made are only 
valid within a quite limited region, and even then only approximately so. The 
reason why K-M theory still works reasonably well is that normally no inferences 
are made from the two parameters of the model to actual optical properties of the 
material. They are merely treated as two experimentally measured parameters 
with no particular physical meaning. For detailed modelling of the optical behav­
ior of turbid media like paper, a physical approach like ours is more accurate and 
more rewarding in terms of understanding, although somewhat more difficult to 
undertake. 

Unfortunately, it is impossible to go into full detail on our model and our simula­
tions on the limited space available here. Further reading and can be found in a 
recent licentiate thesis from our group [4]. 
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Previous work on the spread function 

Quite a few authors have recognized the existence of a "spread function" that is 
responsible for the optical dot gain, and some measurements have been presented 
in the past [5][6][7]. However, the measurements have all suffered from a high 
level of noise, and previous authors have not taken into account the dependence 
of the spread function on the illumination and detection geometry, or at least they 
have failed to mention it. Measurements have been performed with two different 
approaches. The first approach measures the reflection from a small illuminated 
spot. The second approach measures on a sharp edge, either a physical edge 
placed on the surface by printing or other means, or a projected edge from a spe­
cial illumination setup. Since the measurements are quite noisy, no detailed com­
parison can be made to our simulations, but our model shows a qualitative 
agreement with all of the previously published results. 

Purely theoretical work in the field is very sparse and quite limited, due to the 
complexity of multiple scattering problems. Only one mildly relevant study has 
been found, made by Giovanelli in 1956 [8], but that one assumes the same kind 
of internally incident diffuse light as the K-M theory, which we have shown to be 
incorrect. Nevertheless, if we adjust our model to use this kind of incident light, it 
agrees well with the theoretical findings of Giovanelli.t 

Direct measurement methods 

For direct measurement of the PSF, one could imagine illuminating a small spot 
on an unprinted paper surface and acquiring an image of the reflected light. That 
reflected image would be the PSF itself. The problem is that the spot would have 
to be very small, only a few micrometers across, and that the illumination geome­
try would be more or less directional. It is hard to imagine a practical illumination 
setup that could project diffuse light onto one point only. Furthermore, a point 
measurement of the PSF would be very different for different points in the sur­
face, and a lot of measurements would have to be averaged to reduce the influ­
ence of such fluctuations. 

Indirect measurement 

Instead of trying to measure the PSF directly, indirect methods could provide a 
better path to the goal. The most natural way of measuring the lateral spread of 
light is at a reasonably sharp and straight printed or projected edge. A projected 
edge has the advantage of that the spread function can be observed directly on 
both sides of the edge. A printed edge, or any kind of physical edge placed 
directly on top of the paper, blocks the dark side of the edge from observation, 

It should be noted that even though Giovanelli's approach is theoretical, the 
solution presented is not exact, but an approximation. 
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but on the other hand, with a physical edge there is a free choice of illumination 
geometry, which is not the case for a projected edge. 

The edge spread function (ESF) is a one-dimensional property E(x), which gives 
us the opportunity to acquire a reflected two-dimensional image and perform an 
averaging along the edge to smooth out the local variations in our measurement. 
The experimental workload is thus much smaller for such a measurement. 

From an observation of the ESF we can calculate the line spread function (LSF), 
denoted by L(x), by a differentiation: 

L(x) = !!_ E(x) = f'(x) 
dx 

The LSF is in turn a projection of the PSF onto one dimension: 

L(x) = f P(x, y)dy 

If we assume that the PSF is circularly symmetric, i.e. that we can express it as: 

P(x, y) = P( jx2. y2) = P(r) 

The transformation from P(r) to L(x) is the Abel transform: 

~ P(r)r 
L(x)=2! dr 

' ,) r2 - x2 

Using a few tricks (see for example [9]), this formula may be inverted to: 

I ~ L'(x) 
P(r) =-- j -dx 

n r 52- r 2 

Where 

d d2 

L'(x) =-L(x) = -, E(x) = E"(x) 
dx dx-

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

If we cannot assume that the PSF is circularly symmetric, we need some other 
clue to its shape, or else an inversion from the ESF or LSF is not even possible. 
The PSF is only circularly symmetric if the illumination is circularly symmetric 
and the paper is isotropic, neither of which may be the case in practice. 

Another approach for measuring the PSF that does not assume any particular 
symmetry is a direct optimization method using the model equation (1) and 
measurements of R(x, y) and T(x, y) to fit a model PSF to experiments. If R and 
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T are both known, it is a standard optimization problem to find P. Using some of 
our knowledge gathered from simulations, it is possible to reduce the dimension­
ality of the optimization to a few parameters, for example the parameters R" and 
a if equation (2). The main problem here is to acquire a proper measurement of 
the transmission function T(x, y). We have made attempts to extract it from look­
through images of a print, but with only limited success. To make that method 
work properly, we need to remove the influence of the varying transmittance of 
the paper, perhaps by immersing the paper in some kind of fluid. This has not yet 
been tried. There are also non-optical methods that could be utilized for measur­
ing the actual physical ink distribution in the surface and calculate a transmission 
image from that [10][11]. 

The optimization approach has one other clear advantage: there is no need for 
any particular printed test pattern. A standard print with any reasonable amount 
of small scale detail will do nicely, e.g. a halftone pattern. 

Extension to color printing 

At TAGA 1995 in Paris, we presented plots of predicted optical dot gain from 
different halftone geometries [2]. More detail on this can be found in another 
paper this year [12.]. For color prints, the situation is a bit more complicated. In 
order to properly model the physical aspects of color, we need to incorporate a 
wavelength dependence for every component of equation (1): 

R(x, y, A.)= l(A.) (T(x, y, A.).. P(x, y, A.)) T(x, y, A) (10) 

The dependence on wavelength is most obvious in the ink film transmission 
T(x, y, A.), since we have more than one color of ink on the surface, but the wave­
length dependence of the illumination and the PSF are also important. Since the 
K-M parameters are known to depend heavily on wavelength, we might expect 
that lhe PSF is also different !Or different wavelengths ci light. I-bwever, we have 
no experimental evidence to support this yet. 

Implications for the color gamut 

By performing a simulation in the spectral domain, sampled at 5 nm intervals in 
our case, we can evaluate the qualitative effects of optical dot gain for color print­
ing. As input data, we used spectrophotometric measurements on actual offset 
prints on coated paper printed with standard European CMYK inks. The trans­
mittance of the primary colors were calculated as the square root of the reflect­
ance divided by the reflectance of the unprinted paper: 

(11) 

A number of ideal color halftone patterns were simulated, assigning each pixel in 
the digital image either of the sixteen possible full-tone color combinations, and 
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the transmission of each pixel was calculated as the product of the transmissions 
for each of the primaries: 

(12) 

and so on. We can thus calculate simulated transmission images for color half­
tone printing and evaluate the effects of optical dot gain using our model. For 
simplicity and for lack of concrete evidence to the contrary, we used a PSF that 
was not dependent on wavelength for the time being. 

The result was quite surprising to us. It turns out that the optical dot gain can 
actually expand the color gamut. 

For reference, we consider the extreme cases where there is either no optical dot 
gain at all (the PSF is an impulse function and no light is diffused sideways) or 
maximum optical dot gain (the PSF has a very large spatial extent, which in 
effect yields a complete diffusion of the incident light before reflection). The 
former corresponds to a Yule-Nielsen parameter of 1, the latter to a Yule-Nielsen 
parameter of 2. With stochastic screening, it is perfectly possible to come close to 
the latter extreme case, since the lateral spreading of light is on the same scale as 
the size of the individual halftone dots. 

All calculations were performed in the spectral domain. For presentation, we 
transform the spectral color data into the CIE L *a*b* color space. The result is 
shown in figure 3. It is clearly seen that the color gamut expands considerably in 
light and middle tones under the influence of optical dot gain, even though the 
extremes of the gamut, the full-tone colors, stay exactly the same. 

a) b) 

Figure 3: Color gamut for a) no dot gain, b) maximum optical dot gain 
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Physical dot gain 

Given that the optical dot gain has an effect on the color gamut, it comes natural 
to also investigate the effect of physical dot gain. A simple model of physical dot 
gain can be easily incorporated into our image processing model framework. 
Instead of assuming perfect halftone dots with sharp edges, we model a smearing 
of the ink by first calculating a perfectly sharp simulated halftone image H(x, y) 

which takes on the values 0 or 1 only. To this image we apply a linear blurring 
(low-pass) filter B(x, y). If the blurring filter kernel is properly normalized, this 
operation does not change the total amount of ink on the surface, but merely 
redistributes it by smearing out sharp edges. After the smearing, we exponentiate 
the result to get our final transmission image T(x, y) for the model: 

(13) 

In this equation, D"'"' is the full-tone density. For color halftone images, a 
dependence of wavelength needs to be incorporated, and we also need to calcu­
late one transmission image for each primary ink, but the basic model remains the 
same: 

(14) 

Once again, we show the extreme case for reference. If we have a very large 
physical dot gain, the halftone pattern is effectively blurred out into a smooth 
layer of ink of varying thickness, and we approach the characteristics of a true 
subtractive process. The color gamut of such a process is shown in figure 4. For 
this extreme case, subsequent optical dot gain has no effect, so this is really the 
largest color gamut achievable using inks with these particular spectral proper­
ties. 

It is clear that the physical dot gain also expands the color gamut. It should be 
noted, however, that at least for offset printing, the extreme physical dot gain cor­
responding to the color gamut of figure 4 is not encountered in practice, whereas 
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the extreme optical dot gain of figure 3 is actually quite close to what we might 
expect from an offset printed stochastic screen with a small spot size. 

a) b) 

Figure 4: Color gamut for a) no dot gain, b) maximum physical dot gain 

Conclusion 

Our previously presented model for optical dot gain contains a point spread func­
tion for diffuse reflection, which was calculated by computer simulations. For 
practical purposes, this point spread function may also be calculated from meas­
urements identical to those used for determining the Kubelka-Munk coefficients, 
although with somewhat more complicated calculations. The point spread func­
tion could also be measured, either directly or indirectly, by digital image analy­
sis methods. Previously published results and the agreement between our model 
predictions and common experience support the validity of our model, at least 
qualitatively. 

By extending our model and applying it to color printing, we have shown that 
optical dot gain is not merely an unwanted distortion. It actually expands the 
color gamut for color printing. Physical dot gain expands the color gamut in 
much the same way. Our image processing model framework has proven very 
convenient for simulation and modelling of optical and physical dot gain alike. 
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