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Abstract: A nonlinear heat conduction model was developed on the basis of the 
FINITE DIFFERENCE METHOD to calculate temperature distributions in laser 
irradiated printing plates. The basis of the numerical model is the assumption that 
the laser heated zone in the material represents a semi infinite slab subdivided in 
finite spatial cells. By employing a step by step iteration algorithm referring to 
space and time, the temperature dependent character of the thermophysical 
parameters of the laser exposed material such as specific heat capacity, heat 
conduction and density as well as the optical material parameters such as 
absorptivity and reflection are taken into account. Particularly in the case of 
gravure or flexography, melting and vaporization processes can be included in the 
numerical calculation. 

Introduction 

Aside from the general technology in which diazo or photopolymer coatings are 
exposed by laser wave lengths in the ultraviolet region, the shift in research to 
date has focused on the use of plates irradiated by IR laser diodes /1 /. 

It seems that thermal imaging could be a viable alternative to existing technologies 
for direct - to - plate applications. The evolution of IR laser diodes with more 
powerful imaging meets the requirements regarding lower costs and improved 
longevity and could become a driving force in the offset copy. 

A theoretical in- depth understanding of laser initiated thermal reactions requires 
the understanding of the heating regime in the sandwich coating I base during the 
irradiation process. 

This is also true in the field of laser irradiated plates in gravure as well as in 
flexography. 
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This paper suggests a numerical model for the calculation of the temperature 
distribution along the depth direction of laser exposed plates in various branches 
of printing technology. 

For a precise thermal analysis it is essential to investigate the thermal chemical 
and physical processes in the printing plate which take place during the heating 
process. 

The primary distribution of absorbed energy follows the light distribution. In the 
case of thermal imaging the absorbed light energy is immediately transferred into 
thermal energy and leads to a heating at the location of photon absorption. The 
rise in temperature depends on the heat capacity of the plate material. 

These processes are accompanied by energy consumption triggered by diverse 
chemical or physical processes, representing a crucial factor influencing the 
'thermal sensibility' of the irradiated material. 

Due to the temperature gradient, heat conduction takes place spreading the 
temperature distribution. 

Physical parameters such as heat conduction A, specific heat capacity c, density p, 
light absorptivity and reflection coefficients a and R show frequent alterations in 
temperature dependence and consequently are considered variables. Hence the 
classical equation of heat transport (1) with F as energy source and r as energy 
loss, does not offer a realistic temperature profile. 

p·c· iJT =div(gradT(z,t))+F-r at (1) 

In short we are faced with a nonlinear light absorption and heat conduction 
problem which can not be solved by means of classical analytical methods. 

In this case, employing FINITE DIFFERENCE METHOD can provide a numerical 
solution. The use of the iterative procedure allows one to factor in the temperature 
dependence of the thermophysical as well as of the optical parameters. In this way 
an adapted approach to the problem is feasible. 

The following term for the heat diffusion parameter results from the more or less 
arbitrary choice of the laser beam Gauss radius m: 

{)}2 

t =­
p 4·K 

with 

(2) 
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K=~ (3) 
p·c 

The one dimensional consideration of the heat conduction problem remains valid 
up to a heat diffusion length range 

d= (4) 

This relation also involves the restriction that the heat diffusion period must be 
greater than the duration of the laser exposition, i.e. 

Due to the very short laser exposition period necessary to realise a halftone dot 
into the offset coating or to vaporize holes in gravure and flexo plates, it is 
sufficient to limit the consideration to the heat conduction towards the material 
depth. 

The model 

The basis of the numerical calculation procedure is the assumption that the heated 
bulk phase in the laser irradiated material has the shape of a semi infinite slab 
(comp. the figure 1). This particular model supposes that the end of the slab 
remains the same temperature throughout the whole laser irradiation process. A 
further prerequisite of the model is the assumption of a rotation symmetrical laser 
beam and a perpendicular irradiation angle. Diffraction and scattering phenomena 
are not considered. 

A decisive simplification of the problem is reached (comp. the figure 1) by 
subdividing the slab in cylindrical shaped cells with radius r0 and high Liz. 

Similarly, the laser exposition duration is subdivided in finite time steps with a 
constant span At. 
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Fig. 1 : Cell subdivided slab modeling the laser heated material zone 

Limiting restrictions are chosen in order to assure that there is no energy exchange 
between the cell subdivided slab and the surrounding nonirradiated material 
(adiabatic regime). 

In the case of a sandwich system like a printing plate consisting of two layers the 
FOURIER law should be taken into account at the border of the coating and the 
base. 

The temperature Ti is supposed unique inside the cells and remains constant 
through the time span .1t. Ti is changing regarding the well known laws of heat 
conduction at the timet= l .1T (with I= l,n.) 

Thus the flowing heat across the area Ai during the time step .1t is 

.1q. = k ·A ·L'it· .1T, 
I I I .1z 

temperature difference beween 
the (i- 1)th and i th cell 

length of the cell 

temperature depending heat 
conduction parameter 

(5) 

Considering the heat source F as well as the heat sink y the heat energy in the ith 
cell has the form 

(6) 

The rise in temperature in the i th cell follows the equation 

.1T = .1Q, 
I Ci·pi·V 

(7) 
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with 

c, c(T,) 

p, p(T,) 

V = n·r0 ·Llz 

temperature depending heat 
capacity 

temperature depending density 

cell volume 

From equation (6) and (7) one can derive the relation for the temperature in the i 
th cell at the timet l Llt 0 denotes the number of the respective time step). 

( AJI-1 + A,.l/-1) 
. T,-1,1-1 - . ~ 2 . T,,/-1 + + 

Cu1 · P,,f-J · z 

X . . · Llt r(T') + 1+1,/-1 . T + I 
' •+ 1 1-1 ---'---'---

c,.f-1 · P •. 1-1 · Llz- · · Cu-1 · P,,1-1 · V c,,1-1 · Pu-1 · V 

(8) 

Equation (8) is a recursive formula for the calculation of the temperature 
distribution in the slab for each time step. 

Energy consuming conversion processes such as thermal chemical reactions, 
melting, etc. are simulated so that after the cell has reached the conversion 
temperature T* heat energy is absorbed in the cell by maintaining the same 
temperature as long as the chemical or thermophysical reaction does not come to a 
close. 

In vaporization processes (gravure plates, flexo plates) the vaporized cell no 
longer exists in the model and the next cell is regarded as top cell of the slab. 

Furthermore, alterations of the thermophysical variables are neglected through the 
time span Llt and consequently treated as constants in each time interval. 

The expression 

~ = ~ 2Jr 

Q = J J J J ii(t)· Mz)· [J(r,qJ) · r·dr·dqJ·dz ·dt. (9) 
() (l () 0 

results for the absorbed laser radiation energy in the slab volume, L e., Q is a 
function of time and depth. 
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The function / 1 describes the time dependent behavior of the laser energy flux and 
f2 represents a form function for the laser energy absorption in the bulk phase of 
the irradiated material. 

Cis a normalization factor remaining constant through the time span .1t. 

To describe the time dependent behavior of f1 the following choice of formulaes is 
appropriate: 

(10) 

The values of the time parameters as ! 1 (switch on period), ! 2 (swich off period) 

and rr (swich off time) of the light source determine the time dependent behavior 
of the emitted laser energy by using pulsed lasers (comp. the figure 2). 

1 

1 

t-

Fig. 2 : Time dependent shape of a laser pulse 

Supposing temperature dependent reflection and I or absorption of the laser 
energy also the spatial function f2 alterates. 

Consequently, the temperature dependent behavior of the optical material 
parameters and the time dependent laser power require a recursive step by step 
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calculation of the normalization factor C (the calculation procedure for the factor C 
is showed in the appendix). 

By carrying out the successive iteration in (8), the actual temperature dependent 
values of the thermophysical parameters employed in the i th time step are 
determined by using the temperature calculated in the previous time step (l - 1). 
The approximation includes the assumption that the deviation of the temperature 
dependent parameter values is neglectable between two time steps. The data 
required for the calculation of the actual cell temperature are retrieved from 
diverse subroutines of the computer program after each time step. 

To reach numerical stability one must take care to estimate the time span by 
employing the formula by J. von Neumann 

L1t c"''"(T )· Pmm(f) · 

2· Amax 

(11) 

cmin' Pmin and A..nax denote the lowest as well as the highest value of the temperature 
dependent physical parameters which are fitted by using appropriated polynom 
approximations. 

For the choice of L\z the relation L\z < -
1

- is useful. 
a min 

Conclusion 

The knowledge of the time dependent spatial temperature distribution in laser 
irradiated plate materials enable us to adjust the set of laser parameters according 
to the thermophysical and optical parameters of the plate material. In the case of 
temperature dependent alterations of the thermophysical and optical data due to 
physical or chemical processes taking place in the laser exposed material zone, the 
heat conduction equation can not be solved by employing classical analytical 
methods. 

Using the FINITE DIFFERENCE METHOD the calculation of the temperature 
according to the material depth and time can be carried out numerically. 

The numerical procedure includes a step by step computation of the temperature 
in the cells of the spatial subdivided slab. The temperature dependence of the 
optical and thermophysical parameters is fitted by means of selected polynom 
approximations. 

Appendix 

Starting with the absorbed laser energy 
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Q= II D(r,cp,z,t)·dV·dt. (12) 

the energy density can be written as a product of the form factors f1, f2, f3 and the 
normalization factor C : 

D(r,cp,z,t) = C(t) · Mt) · Y z,t) · M r,cp). 

For the factor C (t) follows the expression: 

Q 
C(t) = _ 2n - -

l MO·dt·J l [J(r,cp)·r·dr·dqJ·JYz,t)·dz 
0 () 0 0 

The absorption of the laser light obeys the Lambert law: 

yz,t) = exp(~a(z, T(z, t)) · z ). 

(13) 

(14) 

(15) 

a(z, T (z, t)) denotes the temperature dependent absorption coefficient which 
remains constant throughout the time interval.1t. 

The successive iteration procedure to calculate the temperature in the cell divided 
slab requires a time subdivision of the total laser energy. 

Considering the absorption behavior of the i th cell of the irradiated material in the 
l th time step, the intensity loss of the laser radiation after running across the cell is 
described by the function 

(16) 

with z, ~ z ~ z,+1 

Furthermore taking into account the temperature dependent reflection coefficient 
R (T) the definitive shape of f2 is 

According to the thermophysical parameters the absorption a as well as the 
reflection coefficient R remain constant through the time step L\t. 

For the l th time step the heat energy can be represented by the equation 
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t; 21r 

Q.11 f f f f c.11. ·MtJ·MzJ·Mr,cpJ·r·dr·dcp·dt·dz. (18) 

0 t, {) () 

By spatial subdividing of the slab the first integral in (18) can be approximated by 
a sum of integrals extending over the respective length of the 

i th cell Liz: 

w (J+-1L1z 11 2rr 

.1Qll, = L f f f f c~f, ·MI)·jJz),(l(r,cp)·r dr·dcp·dt·dz. (19) 

t, . () 0 

with m 
L 

(L -length of the slab). 

For the constant C results the term 

(20) 

which is valid for the time step Lit. 

Supposing a Gauss shaped laser beam profile the equation off, (r,cp) is 

(21) 

w denotes the Gauss radius. 

From integration over the half space and over the whole angle follows the term 

7 m 

Jr·w- L" --· exp(-a (T )·z )· 2 ! \ / J I 

n = l,m 
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and leads to the equation 

c", (22) 

The values of the optical parameters a and R in equation (22) correspond with the 
respective cell temperature of the previous time step L\t1_1• 
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