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Abstract: A psychophysical evaluation was performed to test the quality of 
several color gamut mapping algorithms. The task was to determine which 
mapping strategy produced the best matches to the original image. Observer 
preference was not considered. The algorithms consisted of both device­
dependent and image-dependent mappings. Three types of lightness scaling 
functions (linear compression, chroma weighted linear compression, and image­
dependent sigmoidal compression) and four types of chromatic mapping 
functions were tested (linear compression, knee-point compression, "sigmoid­
like" compression, and clipping). The source and destination devices considered 
were a monitor and a plain-paper inkjet printer respectively. The results showed 
that, for all of the images tested, the algorithms that used image-dependent 
sigmoidal lightness remapping functions produced superior matches to those 
that utilized linear lightness scaling. In addition, the results support using 
chromatic compression functions that were closely related to chromatic clipping 
functions. 

Introduction 

Color gamut mapping is an integral part of digital color reproduction. The need 
for color gamut mapping arises when the source image contains color values that 
are not physically realizable on the destination device. This situation frequently 
arises in cross-media color reproduction when the two imaging systems utilize 
different primary sets. One of the most notable examples of this is when a 
monitor original is reproduced lithographically. In general, the color gamut of 
the monitor is larger than the lithographic print. Thus, some type of mapping 
must be utilized to move the out-of-gamut monitor (source) pixels into the 
gamut of the lithographic (destination) gamut. 

Throughout this article, the gamut mismatch between two devices will be 
characterized into lightness and chromatic components. A lightness mismatch 
exists between two gamuts when their respective black-point Iightnesses are not 
equal. This results in a difference in the lightness dynamic range of the devices 
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(i.e., the device with the lower black-point lightness has the larger lightness 
dynamic range). The chromatic components of a gamut mismatch result from 
the hue, lightness, and chroma differences of the primaries. Additional factors 
such as media characteristics (e.g., paper gloss, paper "whiteness", fluorescence) 
and digital processing (e.g., halftoning and UCR/GCR) effect the gamut of an 
imaging device. 

When designing a color gamut mapping strategy, several factors need to be 
considered. Ultimately, the reproduction task needs to be considered. For 
example, reproduction of a business graphic image may place more emphasis on 
the chromatic image content and the smoothness of subtle lightness and chroma 
gradients. Less emphasis may be placed on the lightness and hue of the 
reproduction. For pictorial image gamut mapping tasks, preservation of the 
lightness contrast and the hue of the original may be the most important. 

The goal of this study was to test the effectiveness of using image-dependent 
contrast preserving lightness rescaling functions along with image-dependent 
non-linear chromatic compression functions. The context under which these 
experiments were performed was to determine which algorithm produced the 
reproductions that were the best match to the original. The following sections 
detail the motivation and the form of the gamut mapping algorithms used, the 
psychophysical experiments performed, and conclusions. 

Gamut Mapping Algorithms 

Lightness scaling 

In color gamut mapping for pictorial images, one of the biggest obstacles that 
needs to be overcome is the lightness dynamic range differences between the 
source and destination gamuts. Typically, linear lightness rescaling functions 
have been used to scale the input image data into the gamut of the destination 
device (Stone and Wallace (1991), Viggiano and Wang (1992), MacDonald and 
Morovic (1995), Montag and Fairchild (1997), Morovic and Luo (1997, 1998), 
Morovic (1998)), as shown in Figure la. The linear lightness remapping process 
suffers from a global reduction in the perceived lightness contrast and an 
increase in the mean lightness of the remapped image. When the dynamic range 
difference between the source and destination devices is significant, output 
images tend to appear light and often times contain a "milky" or "hazy" 
appearance in the shadow detail. 

When the dynamic range differences between the input and output gamuts are 
small, "hard" clipping might be considered, as shown in Figure 1a. In this case, 
all of the input image pixels whose lightness are less than that of the destination 
black-point are simply clipped to that value. This process has the advantage of 
preserving the lightness of most of the image. However, when the source and 
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destination black-points are significantly different, the many-to-one mapping 
associated with clipping can result in "flat" or "blocked" shadowed regions. 

In order to overcome the limitations of the contrast loss associated with linear 
lightness mapping and the texture loss associated with "hard" clipping, Braun 
and Fairchild (1999) have developed an adaptive lightness rescaling process that 
utilizes sigmoidal mapping functions. The form of the sigmoidal functions was 
based on a cumulative normal function. They are adaptive in that their shape is 
derived from the lightness histogram of the input image and depends on the 
black-point differences between the source and destination gamuts. Example 
remapping functions are shown for three different histogram shapes in Figure 
1 b. The shape of the sigmoidal remapping function aids in the dynamic range 
mapping process in two ways: 1.) By increasing the image contrast during the 
remapping process, the perceived lightness contrast of the original is 
approximately maintained across a wide range of destination dynamic ranges. 
2.) The low end compression is gradual, thus reducing the low-end textural 
defects of hard-clipping. 
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Figure 1a,b. Lightness rescaling functions used for rescaling from an input 
dynamic range of0-100 lightness units to an output range of20-100 lightness 

units. (a) Device-dependent clipping and linear compression functions. (b) 
Image-dependent sigmoidal contrast preserving remapping functions for three 

image lightness keys (Braun and Fairchild (1999)). 

Chroma mapping functions 

Chromatic remapping functions can be broken down into scaling and clipping 
functions. Scaling functions act on all pixels in the image. Clipping functions 
only act on the out-of-gamut pixels in the image. In a gamut mapping task where 
the lightness and the chromatic channels are mapped sequentially, typically the 
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lightness channel is mapped first and the chromatic channels are mapped 
second. The most common forms of chromatic scaling functions are linear and 
knee-functions (Gentile, Walowitt, and Allebach (1991)), shown in Figure 2. 
The linear compression function globally reduces the chromatic signal 
throughout the entire gamut. The knee-function rescalings preserve the 
chromatic signal through the central portion of the gamut while compressing the 
chromatic signal near the edges of the gamut. This has the effect of preserving 
the character of the low chromatic signal, where color shifts are very noticeable, 
and performing the majority of the chromatic compression where the differences 
are less noticeable. 
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Figure 2. Illustration of three chroma mapping functions. The examples shows 
and input chroma range from 0-100 units mapped into an output range of 0-80 

units. The knee point of the two-piece linear knee function was set at 90 percent 
of the maximum output chroma. 

As with lightness remapping, the chromatic clipping algorithms have the 
advantage that they leave the majority of the chromatic content unchanged in the 
mapping process. However, just as with lightness clipping the many-to-one 
process of chromatic clipping can have artifacts when a group of spatially 
related pixels gets mapped to the same point in color space. The use of scaling 
functions reduces these effects. In general, non-linear chromatic compression 
functions like knee-functions perform better than linear or clipping as the range 
of chromatic compression increases. Using these types of functions helps to 
maintain the chromatic contrast of the original scene while avoiding clipping 
artifacts. 

A "sigmoid-like" chromatic remapping function was introduced based on the 
success of the sigmoidal lightness remapping function in maintaining the 
lightness contrast of the original scene in the reduced dynamic range of the 
destination device. The form of this scaling function is given in Figure 3. The 
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desired effect with using this type of rescaling function was to increase the 
chromatic image contrast so that the perceived chromatic contrast would be 
better maintained under the reduced range conditions of the destination device. 
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Figure 3. "Sigmoid-like" chroma scaling function. This function has three linear 
segments. The first segment is a 1-to-1 mapping (slope=l.O). The second 

segment expands the input chroma, slope > 1.0. The third segment (slope < 1.0) 
compresses the high-end chroma values into the destination gamut. 

Chroma scaling directions 

Many researchers have looked at the optimal direction to scale for different 
gamut mapping tasks (MacDonald and Morovic (1995), Katoh and Ito (1996), 
Morovic and Luo (1997), Ebner and Fairchild (1998a)). Of these studies, the 
work by Morovic and Luo was conducted predominantly for pictorial images. 
Their conclusion was that the cusp point of the destination gamut was the most 
robust point toward which to scale. In their studies, they preserved the metric 
hue angle of the reference color space. They showed that the hue-preserving 
mapping was as effective as one that rotated the input hue to be more in line 
with primaries of the destination device (Morovic and Luo (1998)). For the 
research presented in the current paper, cusp point scaling was utilized due to its 
general good performance. 

Color spaces for gamut mapping 

Recently, there have been numerous studies that have shown the need for a 
uniform color space for gamut mapping (Hung and Berns (1995), Braun, Ebner, 
and Fairchild (1998), Ebner and Fairchild (1998b), Marcu (1998), McCann 
(1999)). It has been shown that many of the current color appearance spaces 
(e.g., Hunt95, CIELAB, CIELUV, CIECAM97s) have significant hue non­
linearities (Hung and Berns (1995), Ebner and Fairchild (1998b)). An example 
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of this can be seen in Figure 4 for CIELAB and CIECAM97s. The implication 
of these hue non-linearities for color gamut mapping can be dramatic for 
algorithms that preserve metric hue angle (e.g., hah in CIELAB). Significant 
perceived hue shifts can result depending on the amount of lightness and/or 
chroma compression (Braun, Ebner, and Fairchild (1998)). The most notable 
example occurs in the "blue" region of color space were a high chroma "blue" is 
mapped to a lower chroma "purple" when mapped along lines of constant 
CIELAB metric hue angle. 
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Figure 4a,b. Hung and Berns Lines of constant perceived hue plotted in (a) 
CIELAB and (b) CIECAM97s. 

The color space used for gamut mapping in this study was the Hung and Berns 
hue-linearized CIELAB color space given by Braun, Ebner, and Fairchild 
(1998). This color space is identical to CIELAB except in the "blue" region of 
color space where the perceived hue lines significantly depart from the metric 
hue angle of CIELAB. Other hue-corrected color spaces developed by Marcu 
(1998) and McCann (1999) were based on the Munsell data. The advantage of 
using the Hung and Berns data to correct the CIELAB color space is that their 
data set extend to much more chromatic colors than the Munsell data. For color 
gamut mapping this is important since most of the compression happens on high 
chroma colors where the hue non-linearity is the greatest. An alternate color 
space would have been to use the IPT color space developed by Ebner and 
Fairchild ( 1998b ). This space was not selected since it has not yet been fully 
tested for gamut mapping tasks using pictorial images. However, similar results 
would be expected. 

Device-dependent and image-dependent mappings 

Implementation of gamut mapping algorithms that use scaling functions requires 
that all of the parameters used for the scaling functions be calculated from either 
the source/destination gamut surface data or from the image/destination gamut 
surface data. In device-dependent gamut mapping the scaling functions are set 
by evaluating the differences in the gamut surface data between the source and 

650 



destination devices. For image-dependent gamut mapping the scaling functions 
are set by evaluating the differences between the input image data and the 
destination gamut. Morovic (1998) has given an excellent description of several 
device dependent gamut mapping strategies. 

Each of these mappings strategies has benefits. The device-dependent mappings 
can be easily generalized, encoded into multidimensional look-up tables (LUTs), 
and implemented in color management software (e.g., the ICC paradigm). 
Image-dependent mappings are less suitable to LUT implementation and are 
therefore more restrictive in their application in traditional color management 
software. However, since these gamut mapping algorithms are fine-tuned for 
each input image, greater flexibility exists for the image-dependent mappings. 

Image-dependent mappings can take on many forms. Many researchers have 
shown the benefit of applying image-dependent mappings to both lightness and 
chroma scaling functions (Gentile, Walowitt, and Allebach (1991), Montag and 
Fairchild (1997), Morovic (1998)). For lightness remapping, the image 
dependence has typically come from scaling the minimum image lightness to the 
lightness level of the destination device's black-point. In situations where linear 
lightness scaling is utilized, this can have an impact on the final contrast of the 
remapped image since less compression is required. Wolski, Allebach, and 
Bouman (1994) utilized a similar strategy for chroma compression. In their 
algorithm, they the located the image pixel that had the maximum chroma, for 
each hue angle. They then used this point to set the chroma scaling so that it 
would be scaled into a chroma equal to that of the cusp point. 

In general, image-dependent mappings can improve the quality of the mapped 
image over the device-dependent mappings. One of the drawbacks of basing the 
gamut compression on the lightness of the minimum pixel in the image or the 
maximum chroma at a given hue angle is that these points could be outliers in 
the multidimensional image histogram. As such, basing the compression on 
these points may not be the best possible use of the lightness or chromatic range 
given the input data set. 

An alternate approach is to consider an image gamut that is defined by the form 
of the multidimensional image histogram. For example, suppose that the three­
dimensional histogram of an image was calculated in the CIELAB color space. 
The volume of CIELAB spanned by this histogram represents the image-gamut. 
Some of this image-gamut will be contained within the gamut of the destination 
device. Other portions of the image gamut will be outside the destination gamut. 
It is possible to base the form of the scaling functions on the differences between 
the destination device's gamut and the image-gamut. Thus, for the regions were 
most of the image data is in gamut little compression is needed to move the 
remaining pixels in gamut. This will result in less overall chromatic compression 
than the device-gamut approach. 
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For this study the image-gamut boundary was taken as the 95 percent contour of 
the cumulative image histogram, calculated in the direction of the chromatic 
scaling (i.e., the cusp point), Appendix A. The 95 percent contour of the image 
histogram was used to separate the image-gamut boundary from any outlying 
image points. Thus, the image-gamut could be considered to contain 95 percent 
of the pixels of the source image. The philosophy subscribed to was that this 
boundary contained the most important contextual information about the gamut 
of the image. The remaining 5 percent of the image data (i.e., outside the image 
gamut) would not significantly change the appearance of the gamut-mapped 
image if simply clipped to the gamut surface. Calculation of the image gamut 
was performed in the Hung and Berns hue-linearized CIELAB LCh color space 
(Braun, Ebner, and Fairchild 1998). 

Experiment 

Algorithms Tested 

A series of gamut mapping algorithms were generated using the lightness and 
chroma compression schemes outlined in the previous section. These algorithms 
were grouped into three lightness rescaling categories (i.e., linear lightness 
compression (LIN), weighted chroma-dependent linear lightness compression 
(GCUSP), and image-dependent sigmoidal lightness compression (SIG)) and 
four chroma scaling categories (i.e., linear cusp-point scaling (LIN), knee­
function cusp-point scaling (KNEE), cusp-point clipping (CLP), image-gamut 
based knee-function scaling (IMGGAM), and "sigmoid-like" cusp-point scaling 
(ENHANCE)). Using combinations of these lightness and chroma scaling 
categories, the following six hue-preserving, cusp-point based gamut mapping 
strategies were used: 

1. LIN_LIN - Linear lightness compression followed by device-dependent 
linear chroma compression (Morovic and Luo 1998). 

2. GCUSP - Weighted, chroma-dependent, linear lightness compression 
followed by device-dependent linear chroma compression (Morovic and 
Luo 1998). 

3. SIG_LIN - Image-dependent sigmoidal lightness compression followed by 
device-dependent linear chroma compression. 

4. SIG_KNEE -Image-dependent sigmoidal lightness compression followed 
by device-dependent knee-function chroma compression. (Note: The knee­
point was set at 90 percent of the destination-gamut range). 
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5. SIG_CLP- Image-dependent sigmoidal lightness compression followed by 
cusp-point clipping. 

6. SIG_ENHANCE - Image-dependent sigmoidal lightness compression 
followed by "sigmoid-like" chroma compression. 

7. SIG_IMGGAM - Image-dependent sigmoidal lightness compression 
followed by image-gamut based knee-function compression. (Note: The 
knee-point was set at 90 percent of the destination-gamut range). 

Gamut definition 

Using the seven algorithms described in the previous section, a gamut mapping 
psychophysics experiment was performed. In order to avoid the costly task of 
making hardcopy reproductions and to efficiently utilize a paired-comparison 
evaluation, this experiment consisted of a simulated print experiment. All of the 
original images were from the full monitor gamut. These images were gamut 
mapped into an ink-jet printer gamut. Instead of printing, the CIELAB values of 
the gamut-mapped images were converted to monitor (RGB) digital counts 
using a gain-offset-gamma model for the monitor (Berns, Motta, and Gorzynski 
1993). These images were displayed with the original on the monitor. Since only 
gamut compression algorithms were considered, all of the gamut-mapped pixels 
were within the monitor gamut. In addition, the ink-jet printer essentially fit 
completely within the monitor gamut, shown in Figure 5 and Figure 6. 
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Figure 5. Slices taken through the source (Monitor) and destination (Printer) 
gamuts along the Hung and Berns hue-linearized CIELAB a* and b* axes. 
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Figure 6. Source (Monitor) and destination (Printer) gamuts projected into the 
Hung and Berns hue-linearized CIELAB [a*,b*] plane. 

For this experiment, all of the images were viewed on a colorimetrically 
calibrated monitor with white point chromaticities near D65. The monitor was a 
Sony GDM-2000TC. The source images were converted to CIELAB using a 
gain-offset-gamma model for the monitor (Berns, Motta, and Gorzynski (1993)). 
The black-point of the Sony monitor was essentially zero (reproductions were 
viewed in a dark room). The destination gamut was obtained for a Hewlett 
Packard HP870Cxi ink-jet printer using plain paper. The black-point of the 
printer was approximately 18 CIELAB L * units. Both of the gamut surfaces 
were defined using the process defined by Braun and Fairchild (1997). 

Image selection 

For this experiment, seven pictorial images were used. These contained a wide 
variety of scenes and included memory colors such as skin tones and grass. In 
addition, the features of these images robustly spanned the CIELAB color space. 
Special attention was given to select images with regions of high chroma red, 
yellow, green, and blue (all colors that are particularly affected when gamut 
mapping from monitor to print). 

Visual Experiment 

The visual experiment consisted of having the twenty observers simultaneously 
view the original image and pairs of the gamut mapped reproductions. The 
observers were instructed to select the reproduction that was the closest match to 
the original. They were specifically instructed that the reproduction that was the 
best match to the original may not be the reproduction that they preferred. 
Preference will be considered in future experiments. 
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Results 

A series of interval scales, shown in Figure 7, were developed that defined both 
the rank ordering of the algorithms performance and a gauge of the relative 
difference between the techniques. These scales were generated using 
Thurstone's "Law of Comparative Judgments" (Torgerson (1958)). Incomplete 
matrix calculations were applied due to cases of unanimous agreement between 
observers which made it impossible to directly calculate the Z-scores for those 
image pairs. The error bars shown on these plots represent the visual uncertainty 
between the algorithms. If the mean Z-score of an algorithm is contained within 
the error bars another algorithm the two algorithms have statistically the same 
visual performance. The confidence intervals used in the error bar calculations 
were derived from C = 1.386 I sqrt(N), where N equals the number of observers. 

Evaluation of the interval scales indicated that, across the images, the algorithms 
could be grouped into three significantly different categories. The first category 
of algorithms was the device-dependent linear lightness and linear chroma 
compression. This category included the GCUSP _LIN and the LIN_LIN 
algorithms. For all of the images, these algorithms had much lower scale values 
than the images mapped using the sigmoidal lightness functions. This was 
primarily due to their low contrast which resulted from the linear dynamic range 
mapping. 

The second category of results consisted of those images that were mapped 
using the sigmoidal lightness remapping functions and the linear chroma 
compression. This gamut mapping strategy created significantly better matches 
than the first category. This result stresses the importance of faithful 
reproduction of the lightness contrast of the scene, which is not found with 
straight linear lightness reproduction. 

The third category of algorithms consisted of those that utilized both the 
sigmoidal lightness remapping functions and the non-linear chroma compression 
functions (SIG_KNEE, SIG_CLP, SIG_IMGGAM, SIG_ENHANCE). For all of 
the images, these techniques produced significantly better matches than those 
produced by the first and second categories of algorithms. There were, however, 
no significant differences noticed between these four algorithms. These gamut 
mapping routines resulted in very similar images since the knee-point of the 
mappings was set at 90 percent of the input gamut range (very similar to cusp­
point clipping). The knee-point was set at the 90 percent point of the destination 
gamut based on the good performance of the clipping algorithms shown by 
(Montag and Fairchild (1998)) and because of the added flexibility to reduce the 
possible quantization artifacts of clipping. 
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Figure 7. Interval scales for the each image tested. Higher Z-scores inticate that 
the algorithms produce the better matches. The scale values should only be 
compared within an image. For example, it is appropriate to compare the 

difference between the Z-scores for the GCUSP _LIN and SIG_ LIN image for 
the " Logger" image. It would not be appropriate to compare the Z-scores 

between the " Logger" and the " KidlnTire" images for the SIG _ CLP algorithm 
because these images were never compared to each other. 

Conclusions 

The results of th is study indicate that, for color gamut mapping of pictorial 
images, the biggest factor that affects the match between an original and a 
reproduction is the lightn ess contrast rendition. This was shown by the 
significant improvements obtained using the image-dependent sigmoidal 
lightness rescaling functions compared to the linear functions. Once the 
lightness contrast was appropriate ly mapped, the chromatic compression 
functions using non-linear knee-funct ions produced significantly superior 
reproductions than the linear chromatic compression functions. Little difference 
was noticed between the chromatic compression functions that were based on 
the image-gamut and those based on the device-gamut mismatches. Thus, under 
general conditions it seems reasonable to forgo the complex image-gamut 
calculations for the chromatic compression when using scaling functions that are 
very similar to clipping. 
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Appendix A- Image-gamut calculation 

1. Convert the CIELAB image data into CIELAB LCh coordinates. 

2. Sort the image data into the nearest integer hue angle between 0 and 360 
degrees. 

3. For each hue angle convert the L * and the Cab* values for the current hue 
and those of the two neighboring hue angles into polar coordinates about 
the cusp-point (Lcusp *) of the current hue center. This results in radius (p) 
and angle (a) terms, for each point, given respectively by: 

( 
L* L* J o -l - cusp * 180 90o a=tan • --+ 

cab n 
(A-2) 

4. Calculate the 2-dimensionial [p, a] histogram of the pixels in that hue and 
the two adjacent hue angles. The bin sizes used in the histogram calculation 
are [Ap,Aa] = [1,1]. The two adjacent hue angle bins are used in the 
histogram process to insure smoothness between the hue segments around 
the hue circle. The gives a 181xN matrix of histogram values where the 
rows of the matrix are the a values from [0,180] degrees in 1 degree steps. 
The N columns of the matrix are in distance units from the cusp-point and 
cover the range of [0, k] where k = nearest integer of max(p) and N = k+ 1. 

5. Calculate the cumulative histogram for each a by taking the cumulative 
sum along the rows of the [p, a] histogram. 
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6. Normalize each row of the cumulative histogram by dividing by the 
maximum value in each row. 

7. For each row of the normalized cumulative histogram, determine the 
column (p) where the cumulative histogram equals (0.95). This radius is 
used to represent the image gamut for the current hue angle and the current 
angular deviation from the cusp point. This process results in a 181-term 
vector that represents the image gamut for the current hue angle. 
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