Details:
Summary:
We present an approach to modelling and controlling the web-fed offset printing process. An image processing and artifi cial neural networks based device is used to measure the printing process output - the observable variables. The observable variables are measured on halftone areas and integrate information about both ink densities and dot sizes. From only one measurement the device is capable of estimating the actual relative amount of each cyan, magenta, yellow, and black ink dispersed on paper in the measuring area. We build and test linear and non-linear printing press models using the measured variables and other parameters characterising the press. The observable variables measured and the press model developed are then further used by a control unit for generating control signals - signals for controlling the ink keys - to compensate for colour deviation. The experimental investigations performed have shown that the non-linear model developed is accurate enough to be used in a control loop for controlling the printing process. The control accuracy - the tracking accuracy of the desired ink level - obtained from the controller was higher than that observed when controlling the press by the operator.